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Chapter 1

Introduction

Figure 1.1: Assembled NTP Server

This document describes the construction of stratum-1 NTP servers with GPS-
based time references and Arduino Megas. This project has been given the nick-
name Stratum Ten by the author. Ten refers to the 10MHz disciplined clock used
in one of the variants, not the actual stratum designation of the server.

Two variants have been developed, each having excellent accuracy. Using the
PPS output from a GPS receiver to track time, the two variants differ in the method
used to measure time in between successive PPS pulses. One technique makes use
of the Arduino Mega’s crystal controlled oscillator; the other uses a precise 10MHz
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clock output from the GPS receiver.
These servers support client/server and interleaved symmetric peer modes of

operation within the NTP protocol. Interleaved symmetric peer mode can provide
accuracies on Linux systems comparable to that of a local GPS reference clock.
Both modes provide similar levels of performance on Windows 7.

An NTP server assembled in a plastic box with the cover removed can be seen in
figure 1.1. On the right side are the BNC connector for PPS signal, and DB-9 RS232
connection for the time-of-day port on a HP55300A GPS receiver. The Ethernet
Shield (version 2) can be seen on top of the Mega prototpye sheild (with red solder
mask). On the back wall wires going to the five status LEDs which are visible. The
LEDs are simply glued into five small holes drilled in the wall of the box.

An example of each variant has been built; one uses an HP55300A reference
clock, while the other uses an inexpensive GPS module made by Trimble. Here is a
list of the major parts required to build this project:

• (1) Arduino Mega1280 or Mega2560.

• (1) Ethernet shield (version 2).

• (1) GPS-based reference clock, one of the following:

– HP55300A Primary Telecom Reference Source

– Trimble ICM SMT 360 GPS receiver module

– Other inexpensive GPS modules will also work but are not supported by
the sketch supplied as part of this project.

• (1) Arduino Mega prototype shield or custom shield PCB.

• A few miscellaneous inexpensive parts

Appendix F contains a list of some of the acronyms used in this report. The
reader can also try an Internet search of other acronyms which are unfamiliar.

1.1 What is Stratum-1?

There is sometimes a misconception that in order for an NTP server to be classified
as stratum-1, it must meet certain accuracy criteria. The stratum-1 moniker only
means that the server obtains its time directly from a reference clock. There is no
stated or implied accuracy criteria for either the reference clock or the NTP server
itself.

This project qualifies as a stratum-1 NTP server because it obtains time directly
from a GPS-based reference clock. It also provides excellent accuracy, but that fact
is not connected with the stratum-1 classification.
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1.2 Accuracy

With NTP’s client/server mode of operation, the limiting factor in performance is
variable network timing. Transmit timestamps must be loaded into UDP packets
before they are transmitted. Packets are then entrusted to the NIC for transmission.
There may be a delay before the NIC can start transmission however. If the amount
of delay is constant, it can be incorporated into the transmit timesatmp. On a busy
network this delay becomes unpredictable with a large range of variability. The
result is that accuracy is determined largely by network delay variations.

NTP’s interleaved symmetric peer mode solves this problem. Hardware times-
tamps captured after a packet is transmitted are sent in a subsequent packet. These
timestamps are precise and not subject to network delay variations for devices shar-
ing a local network hub. Performance on par with a local reference clock becomes
possible when running a Linux variant which includes kernel discipline and nano-
second resolution (the so-called nano-kernel).

Users of Windows 7 and earlier are limited to milli-second accuracy by the the op-
erating system’s clock management capabilities. Here, interleaved symmetric mode
is of less value.

Figures 1.2 and 1.3 detail the estimated accuracy of the two variants in each
NTP mode of operation. The estimate for client/server mode does not include
variable network delays and as such is only realizable on a lightly-loaded network
with predictable delays. Network delay variations can add errors of 50µs or more,
totally dominating the overall accuracy. Individual contributors are combined in
root-sum-square fashion, and totals are the approximate result.

Basic Variant Advanced Variant

PPS Accuracy ±50ns ±50ns

PPS Interpolation Error ±500ns n/a

Rx timestamp ±250ns ±50ns

Tx timestamp uncertainty ±250ns ±400ns

Total accuracy (SWAG) ±700ns ±500ns

Figure 1.2: Estimated accuracy in client/server mode

This does not represent a meticulous accuracy analysis, but the author feels
comfortable in claiming the bottom line SWAGs1 are not too far from the truth.

1SWAG: a Somewhat Wild-Ass Guess
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Basic Variant Advanced Variant

PPS Accuracy ±50ns ±50ns

PPS Interpolation Error ±500ns n/a

Rx timestamps ±250ns ±50ns

Tx timestamps ±250ns ±50ns

Total accuracy (SWAG) ±700ns ±100ns

Figure 1.3: Estimated accuracy in interleaved symmetric mode

Read the Fine Print

These accuracy estimates are based on the assumption that hardware interrupt
signals from the NIC on the Etherenet Shield are true trailing timestamps. Inquiries
with the manufacturer for verification were answered somewhat ambiguously and it
is not clear whether this assumption is correct. To the extent this assumption is
incorrect, the above accuracy estimates will be incorrect.

1.3 Limitations

The sketch provided with this project only supports only a limited subset of the
NTP version 4 protocol. It only listens for UDP packets on port 123; packets sent
to any other port (e.g. ping requests) are ignored.

Incoming NTP packets contain a 3-byte mode field in the first byte of the NTP
packet. The sketch only responds to two settings of the mode field. Packets con-
taining any other mode value are ignored.

Mode 1: Symmetric active mode is supported; a symmetric active packet is re-
turned.

Mode 3: Client mode is supported; a server mode packet is returned.

Modes 0,2,4,5,6,7: Incoming packets with these modes are ignored.

This means that broadcast modes, symmetric passive modes and control mes-
sages are not supported.

Packet extension fields and message authentication are likewise not supported.
Although the sketch has not been tested under these conditions, it is designed to
ignore anything after the first 48 bytes and should return a normal response without
extension fields or authentication hash.
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1.4 Project Variants

The two variants are referred to as basic and advanced. The advanced variant has
the potential to be several times as accurate as the basic. Both variants should be
more accurate than what can be achieved with a PC running ntpd on Linux with a
local reference clock.

Each variant requires at least one minor hardware modification to Arduino
boards. The advanced variant also requires a new bootloader in the Arduino Mega
board. Figure 1.4 provides more detail on hardware and modifications required to
build the two variants.

Variant

Basic Advanced

Mega processor required 1280 or 2560 2560

Arduino Mega Modified No Yes

Mega System Clock No ceramic resonators GPS disciplined 10MHz

Arduino bootloader Standard Custom

Arduino IDE Standard Modified boards.txt file

Ethernet Shield Modified Yes Yes

GPS PPS output required Yes Yes

GPS 10MHz output required No Yes

Figure 1.4: Hardware and modification requirements for the two variants

The basic variant requires an Arduino Mega board with crystal-controlled pro-
cessor clock. Many Arduino boards are supplied with ceramic resonators nowadays,
and this won’t work for the basic version. The ceramic resonator must replaced with
a crystal, or the advanced variant can be built instead.

1.5 Origins

Many years ago the author acquired an HP55300A network time standard. The idea
was to use it on a Windows PC to create a local NTP reference clock. This turns
out to be extremely difficult however. It can be accomplished on older PC hardware
if an RS232 port serviced by the standard Windows driver is available, but finding
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such hardware on a PC these days is near impossible. PCIe cards are available
with RS232 ports but the supplied kernel drivers do not provide interrupt-driven
callbacks necessary for an NTP reference clock driver. The project stalled, and the
HP55300A just sat around collecting dust for years.

A couple of years later, the project came to life again with the discovery of a
web page describing the construction of a Stratum-1 NTP server using the Arduino
platform. This information appears to have been presented at a conference on the
Perl language2, of all places. This discovery changed everything. After years of
stalled progress, that started the ball rolling and led to the result described herein.

2http://cleverdomain.org/yapc2012
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Chapter 2

User Guide

After building one of these servers, here’s a quick guide for how to connect it up
and get it running.

The NTP server uses hard-coded MAC and Ethernet addresses. These must be
configured in the sketch and are set when the sketch is downloaded to the Mega
board with the Arduino IDE.

After making hardware connections and applying power, status information is
displayed on the five LEDs.

2.1 LEDs

The first thing to happen is that all five LEDs will be flashed in sequence from
left to right; this occurs a total of eight times. This verifies that all five LEDs are
working.

Next, the firmware version is flashed on the PPS LED1. The version consists
of three numbers, Major, Minor and Update. The LED is flashed a number of
times equal each version number, followed by a 1.5 second delay. For example, a
version of 3.1.6 would be shown by three flashes, a pause, one flash, a pause and
then six flashes. When this is completed normal operation of the server begins and
is announced on the LEDs as follows.

Error This is flashed briefly whenever an NTP request is ignored. This is normal
during startup while GPS is getting locked and timers are being synchronized.
This LED may also go on solid if a persistent error condition occurs (e.g.
GPS unlocked and/or holdover expired). There are many conditions that may
cause this and not all are described here. See the sketch firmware for more
information. If the LED is on solid and an NTP request is ignored the LED
will be briefly turned off then on again.

1This feature appears starting in firmware version 3.1.6.
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Holdover For the advanced variant only, this indicates that the GPS receiver can-
not receive enough satellites and is in holdover mode. After some period of
time, holdover will expire and the Error LED will go on.

TOD Valid For the basic variant only, this lights when a valid TOD has been
obtained from the GPS receiver. This requires that the receiver has determined
the proper offset between GPS time and UTC time. It can require up to twelve
minutes to get this information from a cold start.

PLL Lock The operation of this LED depends on which variant is built:

Basic The PLL Lock LED indicates that Arduino internal timers have been
phase-locked to the PPS signal and accurate interpolation of time be-
tween PPS signals is possible. This typically requires a couple of minutes
to occur after power-up.

Advanced When flashing slowly and continuously, it indicates that the GPS
receiver’s 10MHz clock is locked to the GPS system but a valid Time-
Of-Day is not yet available. Once a valid TOD is obtained, the LED will
turn on solid. It can take up to twelve minutes to obtain a valid TOD
after power-up.

PPS Flashes once for each PPS signal from the GPS receiver.

NTP Request Flashes once each time the server responds to an NTP request.

When errors occur, the best approach is to connect the USB port and monitor
output for clues to the problem. In more difficult cases, it may be necessary to
modify the firmware sketch to output additional troubleshooting information. Detail
beyond this is not within the scope of this document.

2.2 Hardware Variations

The two variants have different hardware connections and LED definitions as ex-
plained below.

2.3 Basic Variant

LEDs from left to right are as follows: Error, TOD valid, PLL Lock, PPS, NTP
Request.

Connect at least four of the five hardware connections:
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• 3.5mm DC power connector for the Arduino Mega board may be connected
to a source between 5 and 12 volts. If not used, then power must be supplied
via the USB port.

• Type-B USB port can optionally supply power and also outputs status and
debugging information. If this port is not connected, then power must be
applied to the DC power connector.

• Connect the Ethernet connector to the network which will be served by the
NTP server.

• The serial Time-Of-Day port must be connected to the GPS receiver. This is
usually a standard DB9 serial cable. It may be necessary to swap pins 2 and
3 (TX/RX data) on the DB9 connector in the NTP server depending on the
polarity of the DB9 cable used.

• The GPS receiver’s Pulse-Per-Second (PPS) signal is connected to the NTP
server’s PPS connector.

2.4 Advanced Variant

LEDs from left to right are as follows: Error, Holdover, PLL Lock, PPS, NTP
Request.

Connect at least three of the four hardware connections:

• 3.5mm DC power connector for the Arduino Mega board may be connected
to a source between 5 and 12 volts. If not used, then power must be supplied
via the USB port.

• Type-B USB port can optionally supply power and also outputs status and
debugging information. If this port is not connected, then power must be
applied to the DC power connector.

• Connect the Ethernet connector to the network which will be served by the
NTP server.

• Connect a GPS antenna to the antenna port on the NTP server. Ideally, the
antenna should have a clear view of the sky but many newer GPS receivers
(e.g. Trimble ICM SMT 360) may be able to pick up the required satellite
signals inside a building.

9



Chapter 3

Reference Clocks

The project examples that were built use two different GPS-based reference clocks.
The choice of variant is independent from the choice of reference clock. The project
firmware (sketch) supports both reference clocks. Combined with the two NTP
server variants, there are four different configurations. Other GPS-based clocks can
also work in this project if the sketch is modified to provide proper communications
with the clock.

3.1 Communications and Control

This project assumes the reference clock provides a serial port of some kind for the
purposes of obtaining time of day and controlling any options that must be set for
proper operation.

Time of day outputs allow the firmware to figure out which exact second is
associated with each PPS pulse. This is only necessary at start-up and infrequently
thereafter, as a check to ensure that the firmware is still keeping time correctly.

Some reference clocks will require that one or more options be configured at
start-up. For example, the Trimble ICM SMT 360 receiver defaults to broadcasting
several pieces of data every second. This is incompatible with the firmware design
and must be turned off.

The hardware interface to reference clock serial ports varies considerably. Details
of the two reference clocks used for this project are included below. For those using
a different clock, be sure to look over the serial port specifications carefully before
building the hardware interface.
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Figure 3.1: Hewlett-Packard GPS Reference Clock

3.2 HP55300A

This unit (pictured in figure 3.1) is a primary reference clock designed explicitly for
the purpose of keeping time in telecommunications applications. It is similar to the
HP Z3801A/58503A reference clock. At the time of this writing, there are a couple
of these units available on e-Bay for around $450.

The reference clock contains a GPS receiver and oven-controlled crystal oscil-
lator. Once warmed up and stabilized, accurate time is provided for as long as
24 hours or more if the satellite signals are lost. More information on this unit is
available through internet searches.

This project makes two or three connections to the HP55300A, the PPS (pulse-
per-second) signal, RS232 Time of Day port and optionally, the 10MHz disciplined
output. The rising edge of each PPS pulse is aligned precisely (±50ns or better)
with UTC time on the second, and the Time of Day port tells exactly which second
is coming up next. The 10MHz disciplined output is also used for the advanced
variant.

3.2.1 Serial Port Specifics

The HP55300A has a true RS232 serial port which requires a logic inversion between
the port and the Mega2560 processor’s serial port pins. As luck would have it (or
perhaps by design), this serial port works fine with a zero and five-volt signaling
levels for input and the interface does not require any negative voltage supplies.
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HP55300A Serial Port

Signaling levels ±12V, Idle = -12V

Start bits 1

Stop bits 1

Parity none

Initial baud rate 9600

3.3 GPS Receiver Modules

There are many GPS modules on the market which provide PPS outputs and time-
of-day serial ports. Some have built-in antennas while others offer an external
antenna connection. Many of these are quite inexpensive and can be substituted for
the HP55300A reference clock. The Arduino sketch can be modified to work with
these modules instead of the HP reference clock.

Given that the HP55300A is obsolete and fairly expensive even if you can find a
used one for sale, what is the downside to using a commercial GPS module instead?
The answer is holdover. If the HP55300A loses the satellite signal it has an extremely
stable temperature-stabilized reference oscillator which can provide time accurate
to 10µs or so for 24 hours – this is called holdover.

With an inexpensive GPS module, if the satellite signal is lost, the PPS output
may just quit and the NTP server is left with no reference clock. In this situation, the
Arduino sketch is able to provide some limited holdover – but just for a few minutes
instead of one or more days. How well holdover works with Arduino depends entirely
on how stable its temperature is. In a temperature stabilized environment it may
be good for an hour or more but in most real-life situations time errors will build
at the rate of one micro-second per minute or more. See the section on holdover for
more information.

3.3.1 Trimble ICM SMT 360

The sketch supports the Trimble ICM SMT 360 GPS
receiver module. This module is designed specifically
for timing applications as opposed to navigation. It
provides a 10MHz disciplined clock output which is
required by the advanced variant of this project. It
also provides automatic holdover for short periods of
time if the satellite signal is lost.
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This module has the added benefit that the 10MHz signal is always present and
can be used for the Mega’s system clock.

3.3.2 Trimble Serial Port Specifics

Compared with a standard RS232 interface, the ICM SMT 360 serial port is easier
to interface connect to the Mega2560 processor. The only difference compared to
the processor’s serial port is due to 3.3 versus 5-volt power supply levels.

• Logic inversion is not required.

• Data line from GPS can be connected directly to Mega2560.

• Data line from Mega2560 to GPS needs only a simple resistive divider.

Trimble ICM SMT 360 Serial Port

Signaling levels 0, 3.3V, Idle = 3.3V

Start bits 1

Stop bits 1

Parity odd

Initial baud rate 115,200

3.4 Rhubidium Standards

For the more adventurous, rhubidium atomic frequency/time
standards scavenged from cellular telephone equipment are
available on eBay for one or two hundred dollars these days.
An example from an eBay auction is shown on the right.
Many of them will accept a PPS input for disciplining the
oscillator and would provide even more accurate holdover
than the HP55300A. Be aware that the rhubidium lamp used
in these modules does have a limited lifetime and may need
to be replaced. This option is beyond the scope of this report
and is an exercise left for the reader.
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Chapter 4

Ethernet Shield Modifications

This project uses a version 2 Ethernet shield based on the WizNet W5500 NIC
chip. The shields pictured in figures 1.1 and 7.1 were purchased from SparkFun but
other shields based on the W5500 should also work. The newer version 2 shield is
recommended as it contains automatic reset circuitry not present on earlier shields
and is easier to use.

Figure 4.1: Connection to NIC interrupt pin

The following modifications are required:

1. Connect a wire from the W5500’s interrupt pin (pin 36) to digital pin 48 on
the Mega prototype shield. Instead of trying to solder directly to the interrupt
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pin, connection to an associated pull-up resistor is easier. This can be seen in
figure 4.1.

2. Older Mega boards may not have all of the socket pins used by the Ethernet
shield. The Ethernet shield pins which do not align with any socket pin on an
older Mega board are not used and can be cut off, or bent out of the way.

It is also possible that older Ethernet version 1 shields with the W5100 could be
made to work if they provide receive interrupts for UDP packets. This is an exercise
left for the reader.
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Chapter 5

Shield Circuitry

This chapter describes the circuitry required on a hand-built shield. Most of the
circuitry is required to provide an interface between the Mega’s serial port and
the GPS receiver. It therefore depends on which receiver is being used. The only
variant-specific circuitry is a small circuit to condition the 10MHz GPS clock; this is
omitted for the basic variant. Both variants of the Mega shield include the following:

• GPS receiver’s PPS signal connects to digital pin 49; this is the input capture
signal for timer 4 in the processor.

• The interrupt line from the W5500 NIC on the Ethernet shield connects to
digital 48 – the input capture signal for timer 5.

• Digital pins 18 and 19 are also the I/O pins for the Mega’s USART-1 and
are connected to the reference clock’s serial port through some interfacing
circuitry.

• Digital pins 24-28 are optionally used to drive status LEDs. These LED drive
pins can be connected to just about any unused digital I/O pins on the Mega,
or not used at all.

The advanced variant’s shield also includes circuitry to condition the reference
clock’s 10MHz output for use as the Mega’s system clock.

Resistor values and transistors shown on the schematic are what was used on
this project. Many other values and parts may be used successfully. Proper choice
of values and parts is beyond the scope of this article and not discussed further.

5.1 Shield Mechanicals

Physically, the prototype shield can be a full-sized Mega prototype shield, or one
that has been cut down. One of each has been built for this project.
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5.1.1 Full-sized Shield

There is an incompatibility between the standard Mega prototype shield, and the
Ethernet shield. The cause of this is shown in figure 5.1. There is a socket along
one edge of the Ethernet shield which must plug into a matching header on the
Mega. The socket (right) and header (left) are highlighted in the photograph. The
Ethernet shield cannot be installed on top of a standard prototype shield because
the proto shield does not provide a connection to the center header of the Mega
board.

Figure 5.1: Special connector on Etherenet shield

To make this work, a fairly large square hole must be cut in the Mega shield to
permit the socket to mate with the matching header on the Mega.

Figure 5.2: Header pins seen from bottom side of shield.

Install pin headers only in the lower portions of the prototype shield. A sample
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of the headers used is shown in figure 5.2. The black insulator is about 0.10 inch
thick and the pins extend about 0.25 inch past the insulator. These should only be
installed in analog 9-15, communication 14-21 and the bottom two digital rows. Do
not install header pins in any location used by the Ethernet shield.

With the prototype shield installed on the Mega board, the Ethernet shield pins
may now pass through empty holes in the prototype shield and plug into the Mega
board. The example shown in figure 5.3 shows a full-sized shield sandwiched in
between the Mega and Ethernet shield.

Figure 5.3 is a high resolution image of a basic variant shield built for inter-
facing with the HP55300A, and a lot of detail may be seen by zooming in at high
magnification on the photo.

Figure 5.3: Prototype Shield Close-up

The shield in the photo uses SMT components, mostly in SOT-23 and 0805
packages. The current limiting resistors for the LEDs were just soldered directly to
the digital pins, tombstone-style.

5.1.2 Cut-down Shield
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As an alternative to cutting a large square hole in the
prototype shield, the shield can be cut down so that it
only connects to Mega pins not used by the Ethernet
shield. A photo of a custom PC board designed with
this in mind is shown in the photo to the right. It
gives an idea of how a Mega shield would be cut down
to match. This custom shield board only plugs into
the pins at the lower end of the Mega board (as listed
above) and does not interfere with any pins on the Ethernet shield or the Ethernet
shield itself. This same board can be also seen in figure 7.1, plugged into an Arduino
Mega along with an Ethernet shield. Although this shield was designed for the
advanced variant it demonstrates the concept of a cut-down shield which does not
overlap the Ethernet shield.

5.2 HP55300A Interface

Figure 5.4 is a schematic of the shield circuitry required to interface with the
HP55300A reference clock. The USART pins on the processor have logic levels
inverted from what is required on the HP55300A’s RS232 interface. This requires
some interface circuitry to invert the signals before connecting to the HP55300A.

Additionally, the HP55300A has a standard RS232 interface with ±12V signal
levels, but it seems to function properly with the 0-5V output signal produced by
this design. Your mileage may vary.

Zener diode D1 protects the Mega from excessive voltage if a 12-volt signal from
an incorrectly wired RS232 cable were to find its way onto pin 3 of the RS232
connector.

The R2/R3 voltage divider is designed to divide a 15-volt RS232 signal down to
roughly 3 volts. For different reference clocks with lower output levels (e.g. 5 volts
or less) a different divider ratio would be appropriate.

Many different N-channel enhancement mode MOSFETs could be substituted
for the transistors shown in the schematic. That is an exercise left for the reader.

5.3 Trimble ICM SMT 360 Interface

A schematic for interfacing to a Trimble GPS module is shown in figure 5.5. With
this GPS module, serial signal levels are the proper polarity and do not need to
be inverted; only a simple resistor divider is required on the transmit line from
Arduino to GPS module to reduce the 5-volt signal to a save level for the 3.3-volt
GPS receiver.
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Figure 5.4: Arduino Mega Shield Schematic for HP55300A reference clock

The 3.3-volt serial data output from the receiver is sufficient to drive the Mega’s
USART input directly with no additional circuitry.

5.3.1 10MHz System Clock

Both shield schematics show the interface between a 10MHz GPS output and the
XTAL1 pin on the ATMega processor. This circuit is only required for the advanced
variant, and even then some GPS receivers will not require it. Component values in
this circuit depend on the characteristics of the GPS output signal.

Terminating Resistor R11

In most cases this may be omitted. It would be important if the cable connecting
10MHz from the GPS were longer than about ten feet. If the 10MHz source has
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Figure 5.5: Arduino Mega Shield Schematic for Trimble ICM SMT 360 reference
clock

a 50Ω source impedance, this resistor will reduce the signal amplitude by 50%.
Whatever the case, signal amplitude going out of this circuit must be less than 5
volts peak-to-peak. For both of the clock sources described in this project, R11 may
be safely omitted.

Blocking Capacitor C1

In some cases the average DC level of the 10MHz signal may need to be shifted.
This is true for the HP55300A but not for the Trimble GPS module. C1 should be
replaced by a zero-ohm jumper (or just omitted) if level shifting is not necessary.
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Resistive Divider R12/R13

These work in conjunction with C1 to shift the average DC level of the 10MHz
signal. For the HP55300A they place the DC level at about 2.4 volts. The resulting
shifted signal’s excursions should not go below zero volts or above 5 volts. The
Trimble module’s 10MHz signal does not require level shifting and R12/R13 should
be omitted. In fact, for the Trimble module the entire level shift circuit is un-
necessary and the 10MHz clock may be connected directly to the Mega processor’s
XTAL1 pin.

Connecting the Clock

Remove the crystal or ceramic resonator and any associated capacitors and resistors.
Both XTAL1 and XTAL2 pins should be floating when this is complete.

The interface circuit is located on the NTP server shield, and it is only necessary
to run a short twisted pair of 30-gauge insulated wires from the shield to the XTAL1
pin and ground on the Mega2560 board.

There is the potential to create radiated electro-magnetic interference in running
the 10MHz wires from from the connector or GPS module over to the Mega board.
Keep the wires as short as possible and keep them as close to the surface of the
Mega PC board as possible. In some cases it might help to use some small diameter
coax instead of a twisted pair.
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Chapter 6

The Basic Variant

6.1 Hardware

HP55300A Time Standard
=== or ===

GPS Receiver with PPS output

Arduino Mega

RS232 Interface
on Proto Shield

Ethernet Shield
with WizNet W5500

Serial1
Port

RS232 or other serial
Time of Day Port PPS 

Output

SPI 
Interface

Timer5
Input Capture

Timer4
Input Capture

Interrupt
Output

SPI 
Interface

Figure 6.1: Hardware Block Diagram

Figure 6.1 shows the hardware and connections. The design is based on the
Arduino Mega platform which uses an Atmel ATMEGA1280 or ATMEGA2560 pro-
cessor. The processor’s hardware includes several flexible timers which are key to
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the operation of the NTP server. This article assumes the reader is familiar with
these timers and their capabilities.

• Timers 4 and 5 operate with 2MHz clock giving 500ns resolution. They are
both operated in compare-match mode and carefully synchronized so their
values are always identical.

• Time of PPS is recorded by timer 4’s input capture hardware.

• Time of UDP packet receipt and transmission (signalled by W5500 interrupt
pin) recorded by timer 5’s input capture hardware.

• Arduino’s SPI interface controls the W5500 Ethernet NIC.

• Arduino’s Serial1 port is used to obtain time of day from the GPS receiver.

6.1.1 Arduino Mega

The orignal project used an old Mega-1280 board although it should work with the
new Mega-2560 boards as long as the system clock uses a crystal. Boards using a
ceramic resonator will not work for this purpose. With these boards there are two
options: either replace the ceramic resonator with a crystal or supply an external
clock.

Replacing the resonator

The some Mega2560 boards appear to still have mounting pads for a 16MHz through-
hole crystal in an HC49/U package so it should be possible to remove the resonator
and replace with the crystal. The current version (r3) does NOT have space for
a crystal or the parallel capacitors that would be required with it. Changing to a
crystal might require re-programming fuses in the ATMega processor, or it might
not. If you’re going to go this route consider purchasing the most accurate crystal as
it will make the hold-over feature last longer. For boards w/o the crystal mounting
option, the project version using a 10MHz system clock is recommended.

One example of a replacement crystal is part number 9B-16.000MEEJ-B from
TXC Corporation. This is available as of November 2015 from DigiKey (stock
number 887-1244-ND) for less than a dollar. It has a specified frequency tolerance
of ±10ppm and the same tolerance over temperature.

Installing a crystal requires proper selection of load capacitors. A value of 12pF
for each one should work but the author has not tried this and there’s no guarantee
it will work. If you’re not comfortable with this, then consider the external clock
option below.
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Supplying an external clock

This change requires soldering a very small diameter jumper wire. Head-mounted
magnifiers or a stereo microscope are required along with a very small diameter
soldering tip.

Newer Arduino Mega boards use an ATmega8U2 or ATmega16U2 processor for
the USB interface which does use a 16MHz crystal clock. By programming the
CKOUT fuse in this processor, a 16MHz clock will be supplied on the PC7 pin. This
can then be connected as an external clock to the XTAL1 pin on the ATmega2560
processor. There are two steps to this process, which can be done in any order.

• Connect a programmer to the ICSP1 pin header (there is a silk screen dot near
pin one). Using either Atmel or AVR tools, program the CKOUT fuse. No other
fuses should be changed. It may be necessary to read the fuses first if the tool
does not do that automatically. If an oscilloscope is available, it is a good
idea at this point to power up the Arduino board and confirm a good 16MHz
clock is present on the PC7 pin (pin 22 of the ATmega8U2 or ATmega16U2
processor).

• Remove the ceramic resonator and associated parallel resistor and connect a
jumper wire from PC7 of the USB processor to pin XTAL1 on the ATmega2560.
The XTAL1 pin may be pin 34, but check the data sheet for your specific
ATmega2560 processor to be sure. Alternatively, the copper PC board traces
from the processor to the ceramic resonator may be cut without removing the
resonator and the jumper wire connected directly to the processor’s XTAL1 pin.
When completed, the XTAL2 pin should not be connected to any components.

Use a 30-gauge or smaller wire for the jumper. Some may find a 30-gauge wire
to be a little too large and wire between 34 and 40-gauge is probably a better choice.
This author used some 40-gauge insulated magnet wire. With this magnet wire, the
insulation on the ends can be removed simply be heating with a soldering iron.

The addition of the jumper wire will in all likelihood cause the resulting board
to exceed FCC radio emission limits. The jumper wire acts as a small transmitting
antenna and will radiate signals at 16MHz and odd harmonics thereof (e.g. 48,
80, 112, 144MHz, etc...). These emissions will be very weak but will still probably
exceed the legal limits imposed by FCC for commercial products. What does that
mean?

1. The end result could not be sold as a commercial product without further
work to reduce emissions.

2. There might be some interference to nearby radio equipment. This is unlikely
but still possible.
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3. In the (extremely unlikely) event that you receive notification from a neighbor
that this is causing interference, you should immediately turn off your Arduino.
This would be an extremely unlikely event and is only mentioned here for
completeness.

6.2 The Basic Variant’s Weakness

The PPS signal input gives a very precise time reference once every second. However,
important events occur (such as receipt of an NTP request packet) which are not
aligned with the PPS signal. Some way is needed to measure time accurately in
between PPS signals. The obvious tool at hand is one of the Atmel timer/counter
modules driven by the processor’s clock (a crystal-controlled oscillator). With a
2MHz clock on the timer it would be theoretically possible to measure the time of
an unsynchronized event (e.g. UDP packet arrival) relative to the PPS signal to
within 1

2
clock cycle (±250ns).

This sounds good at first blush, but crystal oscillator does not run at exactly
16MHz. How accurate must the crystal oscillator frequency be to give a maximum
error of 1

2
clock tick (250ns) over a period of one second? The answer is 0.25ppm

(parts-per-million) which is also 250ppb (parts-per-billion). Realistically, we might
want the clock frequency error to be 100ns or less so that the clock alignment
uncertainty dominates. The actual goal would then be an accuracy of 100ppb or
better.

Any way you look at it, typical crystal frequency tolerances of as much as a
hundred parts-per-million are not going to cut it. And that doesn’t take temperature
variations into account. Some technique is needed to make accurate measurements
with this inaccurate clock.

As a first step, it is possible by changing the division ratio of the timer/counter
in integer steps to adjust the frequency within a tolerance of about 8ppm and if an
accuracy of about 8µs is adequate, the problem is solved. The author wanted to
better – if for no other reason than it was a challenge.

The solution implemented in this project is to use the timer/counter as part of a
software-controlled fractional-N divider1 with a worst-case settability error of about
4ppb. A software-based phase-locked loop (PLL) is then used to keep the output of
the fractional-N divider aligned with the PPS signal. It does this by making small
changes in the divider’s ratio until the divided clock is exactly aligned with the PPS
signal.

Using this approach, the time of any timer count relative to the PPS signal may
be computed with much improved accuracy. Accuracy is limited mainly by the

1Refer to various internet sources or textbooks to learn more about fractional-N frequency
synthesis
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counter/timer resolution of 500ns, but short-term drift of the crystal oscillator adds
perhaps a couple hundred ns of additional uncertainty. Appendices A and B have
lots of detail on implementation of both the fractional-N divider and PLL.

6.3 Interrupt Design

There are two interrupt sources in this design.

• Timer match interrupts occur when timer 4 is equal to the match compare
register value and resets to zero. The software adjusts the match value in real
time to generate an interrupt period of exactly 1/32 of a second.

• PPS capture interrupts occur when the PPS signal causes the processor to
capture timer 4’s value into the input capture register, IC4. This is effectively
a measurement on the phase or time of the PPS signal.

If these two interrupts were to occur at the same time, the system would not be
able to keep good time. To avoid this problem, the phase-locked loop is designed to
align the PPS signal half-way between two timer match interrupts. This guarantees
there will be a minimum of 1/64 second (roughly 15ms) available for interrupt
processing after each interrupt.

The background tasks are also carefully scheduled so as only to run in the clear
space between interrupts. As a result, it is not necessary for these tasks to ever
disable interrupts – that might create more variability in timestamps.

The background loop checks for, and responds to NTP request packets between
interrupts. Because the receipt of UDP packets in the W5500 are hardware time-
stamped, there is no loss of accuracy in polling their arrival.

Timer Match Interrupts

PPS Interrupt= Timer Match Interrupt Processing

= PPS Interrupt Processing

1/32 sec 1/64 sec 1/64 sec

= Background Tasks

Figure 6.2: Interrupt Design

These concepts are depicted int figure 6.2. The vertical arrows on top represent
the occurrence of timer match interrupts 32 times per second. The single vertical
arrow on the bottom represents the occurance of a PPS interrupt.
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Interrupt service routines set flags to request processing by the background loop.
These flags are detected by the background loop soon after they are set which allows
those tasks to run in the clear space between interrupts. After associated background
tasks are complete, the flags are reset in preparation for the next interrupt.

This design requires that all interrupt and background processing does not con-
sume more than 1/64 of a second (roughly 15ms). Measurements on the current
Arduino sketch show that total processing time anywhere does not exceed about
3ms.

6.3.1 Interrupts in C++

The firmware for this project uses a technique which is not extremely efficient for
servicing timer match and PPS interrupts. Most of the code that needs to run
during these interrupts is in methods on C++ class instances. The AVR interrupt
facilities do not support that directly. This is worked around by having the ISR be
a global function which then immediately calls a method on a global instance of a
C++ class.

This technique works but is inefficient in that it causes the compiler to save a
lot more registers before calling the class method. For fastest processing, the ISR
function should not even be calling other global functions, let alone methods on a
class instance. That’s the down side.

On the up-side, handling the interrupts in a single global function would re-
quire exporting pointers to private data within C++ class instances so that the
global function could perform the necessary operations. This would significantly
complicate the classes and make the code more error-prone.

In the final analysis, the choice was made to use the less efficient approach for
two reasons:

1. The resulting inefficient ISRs do in fact execute fast enough.

2. Reduction in code complexity.

The enterprising person could modify the code as described above if desired to
gain faster interrupt execution.
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Chapter 7

The Advanced Variant

If you’ve read through the detailed appendices covering fractional-N and phase-
locked-loop firmware, it is obvious that a lot of effort is expended dealing Arduino’s
less than perfect 16MHz system clock.

Figure 7.1: Advanced Server with Trimble ICM SMT 360 GPS module

This entire problem can be eliminated by replacing the crystal-controlled system
clock with the 10MHz GPS-disciplined clock output from a GPS receiver. The
receiver synchronizes the 10MHz clock with GPS time such that there are always
exactly ten million clock cycles for every PPS pulse. By using this for the Arduino
system clock, internal timers will always count exactly ten million clocks between
each PPS and interpolating between PPS pulses becomes trivial. Figure 7.2 shows
the block diagram of the advanced variant.
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GPS receivers intended for use in timing applications will often provide auto-
matic holdover on the 10MHz clock when satellite signals are lost. This feature
works for anywhere between a few minutes and one or more days, depending on the
receiver model.

HP55300A Time Standard
=== or ===

GPS Receiver with PPS and
10MHz disciplined clock outputs

Arduino Mega

RS232 Interface
on Proto Shield

Ethernet Shield
with WizNet W5500

Serial1
Port

RS232 or other serial
Time of Day Port

PPS 
Output

SPI 
Interface

Timer 5
Input Capture

Timer4
Input

Capture

Interrupt
Output

SPI 
Interface

Disciplined
10MHz
clock

System Clock
Input

Figure 7.2: Advanced NTP server block diagram

Some GPS receivers will require an option be set to keep the clock cycle count
in sync with PPS all the time. When this option is disabled and PPS error exceeds
a threshold, the receiver may just move the PPS to the nearest 10MHz clock period
with the result that one or two PPS intervals will not contain exactly ten million
clock cycles. This behavior is sometimes called jam sync.

The Arduino Mega is perfectly happy running on a 10MHz system clock and all
of the firmware tasks can still execute fast enough on the reduced frequency. This
completely removes any need for a software-based PLL so the firmware becomes
trivial in comparison to the variant described in the previous chapter. Changing
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the system clock frequency to 10MHz is not without its challenges however.

• The bootloader assumes a 16MHz system clock and uses this information to
generate signals at the proper baud rate when communicating with the USB
port. Changing to a 10MHz clock requires modification of the boot loader.

• Arduino sketches are built assuming a 16MHz system clock. One of the Ar-
duino installation files must be modified to add another variant of the Mega
which has a 10MHz system clock. This is a simple text file and the required
modifications are easy.

Those wishing to go down this road will need to re-program the Arduino Mega’s
bootloader and this requires a special hardware tool that plugs onto one of the
interior 6-pin headers on the Mega.

7.1 Running a Mega2560 at 10MHz

This section explains the firmware changes required to operate the Mega2560 with
a 10MHz external clock. Section 5.3.1 describes the hardware changes which are
also required.

7.1.1 Boot Loader Changes

The bootloader used by Mega2560’s is known as the stk500v2. As shown in fig-
ure 1.4, the advanced variant requires the Mega2560. While it could work with a
Mega1280, that board uses a different bootloader and this project does not include
changes that would be required with the Mega1280’s bootloader.

The boot loader must be re-built to generate the proper baud rate for data trans-
fers to and from USB. Normally, the Mega2560 performs sketch firmware transfers
at 115,200 baud. Running these data transfers at 115,200 or 57,600 baud does not
work when using a 10MHz system clock1. The next lower rate, 28,800 does work
and can be implemented with the following changes to the loader. Modified source
code and a pre-built hex file is included in the project package.

A new target was added to Makefile named mega2560 10MHz. In the new target,
the CPU frequency has been changed to 10MHz and upload baud rate modified by
adding -DBAUDRATE=28800 to the end of the CFLAGS macro.

WinAvr was used to build the bootloader with the command line:

make mega2560_10MHz

1The reasons for this are not known; the true baud rates should only be in error by 1.3% or
less. Perhaps it is related to the increased instruction execution time not keeping up with the boot
protocol.
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This creates a new hex file named stk500boot_v2_mega2560.hex. Program it
into the processor using the ISP tool of your choice. Fuse settings do not need to
be re-programmed, the settings supplied with the Mega2560 board work fine.

The WinAvr installer is evil. Do not give it permission to modify the PATH

environment variable. Instead of adding to the path it will replace the entire path
with only its required directories.

7.1.2 Arduino IDE Changes

Find the boards.txt file in the Arduino installation. Create a new section in the
file defining the 10MHz variant. Make a copy of the original section and change
CPU frequency to 10MHz and the upload speed to 28,800 baud. Do not copy the
vid and pid portions of the original section into the new section. Figure 7.3 shows
an example of what the new section might look like.

If you want to use the Arduino IDE to program the bootloader, then rename the
hex file (e.g. to mega2560_10MHz.hex) and place a copy of it in the
bootloaders\stk500v2 subdirectory within the Arduino installation directory. You’ll
need to poke around to find this location, but in some installations it is (relative to
the installation folder) here:

hardware\arduino\avr\bootloaders

The file name you use must match the bootloader.file property specified in
boards.txt. This is demonstrated in the example in figure 7.3.

7.2 Bootstrapping

When reprogramming the bootloader it is important to have a working 10MHz clock
available. The new bootloader can be programmed while running on the 16MHz
clock. After that however, a running 10MHz clock must be connected in order to do
anything with the Mega. You can connect the 10MHz clock either before or after
programming the bootloader.

Try programming the simple blink sketch to verify that all is well at 10MHz.

7.3 The 10MHz Sketch

For the advanced variant there is no fractional-N divider, phase-locked loop or feed-
forward frequency correction. The disciplined 10MHz clock eliminates the need for
all of that complexity. Timers 4/5 are still used to record PPS and UDP packet
events but very little timer management is required. The timers will count a cycle
from 0 to 62,499 160 times for every PPS signal.
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##############################################################

mega10mhz.name=10MHz Arduino Mega or Mega 2560

mega10mhz.upload.tool=avrdude

mega10mhz.upload.maximum_data_size=8192

mega10mhz.bootloader.tool=avrdude

mega10mhz.bootloader.low_fuses=0xFF

mega10mhz.bootloader.unlock_bits=0x3F

mega10mhz.bootloader.lock_bits=0x0F

mega10mhz.build.f_cpu=10000000L

mega10mhz.build.core=arduino

mega10mhz.build.variant=mega

# default board may be overridden by the cpu menu

mega10mhz.build.board=AVR_MEGA2560

## Arduino Mega w/ ATmega2560

## -------------------------

mega10mhz.menu.cpu.atmega2560=ATmega2560 (Mega 2560)

mega10mhz.menu.cpu.atmega2560.upload.protocol=wiring

mega10mhz.menu.cpu.atmega2560.upload.maximum_size=253952

mega10mhz.menu.cpu.atmega2560.upload.speed=28800

mega10mhz.menu.cpu.atmega2560.bootloader.high_fuses=0xD8

mega10mhz.menu.cpu.atmega2560.bootloader.extended_fuses=0xFD

mega10mhz.menu.cpu.atmega2560.bootloader.file=stk500v2/mega2560_10MHz.hex

mega10mhz.menu.cpu.atmega2560.build.mcu=atmega2560

mega10mhz.menu.cpu.atmega2560.build.board=AVR_MEGA2560

##############################################################

Figure 7.3: Example of modified section in boards.txt
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• When the first PPS pulse arrives, timers 4/5 are both preset half-way through
the 62,500 count sequence. This results in PPS interrupts being displaced in
time from timer overflow interrupts by one-half timer cycle (3.125ms).

• After initialization, there are only two timer management tasks:

– Keep a cycle counter modulo 160 so captured times can be computed
relative to PPS.

– Verify that PPS arrives on the same timer count each time. If that does
not happen, it indicates the 10MHz clock is not being properly disciplined
by the GPS reference clock.

Both timers are configured to run at 10MHz so there is 100ns per timer tick.
They are both initialized to the same value so will count in unison forever more.

7.3.1 Interrupt Design

This part of the firmware is mostly identical to what is done in the basic variant,
see figure 6.2 for more information.

7.3.2 Arduino Timing Accuracy

The timing functions millis() and micros() are not mathematically exact unless
F_CPU happens to be a friendly value, and 10MHz is not a friendly value. As a
result, millis() and micros() cannot be used for critical timing with a 10MHz system
clock – even though the clock itself is extremely accurate.
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Chapter 8

Client/Server Operation

Only rudimentary explanations of NTP operation are provided here. See the web
sites below for all of the details.

https://www.eecis.udel.edu/~mills/ntp.html

http://www.ntp.org

The most common mode of NTP operation is called client/server. Here, the
client wishing to synchronize its clock sends a request to the server, and the server
replies with clock readings needed to synchronize time. When these transactions
are complete, the client will have obtained the following time values:

• Approximate time the UDP request packet was transmitted.

• Accurate time the UDP packet was received by server.

• Approximate time reply packet was transmitted by server.

• Accurate time reply packet was received by client.

Accurate times are those captured either in hardware or OS device drivers. They
are typically accurate to a few microseconds or better. It is the approximate times
which limit the accuracy of NTP in client/server mode. Approximate times are
largely the result of a Catch-22 in the design of NTP’s client/server protocol.

Each transmitted UDP packet includes a declaration of the exact time it was
transmitted (the transmit timestamp). Problem is, the sender does not really know
when the packet will be transmitted...until it’s transmitted...and then it’s too late
to change the transmit time encoded in the packet. Competing Ethernet traffic
on a busy network can cause unpredictable delays in the packet’s transmission.
As a result, transmit timestamps in a UDP packet can by in error by a hundred
microseconds or more on a busy Ethernet network.
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The best possible performance in client/server mode occurs on a network without
un-predictable delays. This can be achieved if there is no network traffic other than
NTP packets. For example, a dedicated Ethernet card on a PC could be connected
directly to the NTP server with a cross-over cable. The NTP server sketch uses the
following procedure to obtain the most accurate transmit timestamps possible on a
quiet network connection.

1. Acquire the current accurate time, t1.

2. Add a fixed delay to this to get t2 = t1 + δ.

3. Add another fixed delay to this to get t3 = t2 + ǫ.

4. Place t3 into the outgoing UDP packet as the transmit time.

5. Load the packet into the NIC’s output buffer; at this point a single command
to the NIC will begin the transmission process.

6. Wait until the current time is t2 and kick off the NIC transmission.

Above, δ is chosen to be a little bit longer than it takes to build the reply packet
and load it into the NIC’s output buffer. This guarantees the sketch will be ready
to kick off transmission before time t2.

The value of ǫ is equal to the time it takes the NIC to transmit the packet after
being kicked off (on a quiet network w/no other traffic). Both of these delays can
be measured by an oscilloscope if some unused digital pins on the Mega are used
as flags. The ending of the ǫ delay is signaled by the NIC’s SEND_OK interrupt. In
the current version of the sketch, δ has been set to 800µs and ǫ is around 25µs
(depending on the variant of server).

This scheme works pretty well as long as network traffic is quiet. On a busy
network all this work is for naught, and variable delays become the dominant factor
determining accuracy of the NTP server.

Performance can be improved further through use of NTP’s interleaved symmet-
ric mode of operation. This mode replaces approximate transmit timestamps with
exact transmit times which are sent after-the-fact in a subsequent UDP packet.
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Chapter 9

Interleaved Symmetric Operation

The sketch supports interleaved symmetric active peer mode of operation within the
NTP protocol. This mode drastically reduces the effect of variable network delays
that occur when the NIC tries to get onto the wire. Experiments conducted by this
author show that the interleaved symmetric mode can reduce uncertainties by a
ratio of 6:1 compared to the client/server mode. Figure 10.5 shows this graphically.

It should be mentioned that there are two symmetric modes, basic and inter-
leaved. The basic symmetric mode does not allow for hardware timestamps and is
therefore of no interest in this project. What follows is concerned only with the
interleaved symmetric mode.

9.1 Interleaved Symmetric Mode Behavior

Tutorial descriptions of this mode (found on various web sites) are quite detailed
but unfortunately for this author, difficult to understand. Interleaved symmetric
operation is described here as understood by the author after reading various tuto-
rials. There is no guarantee this author got it right, and some of the details in this
description may be incorrect.

In reading tutorial descriptions of packet flow in symmetric modes, it is easy to
miss some of the important aspects of operation. Figure 9.1 is the usual diagram
used to show how basic symmetric mode works. From looking at the diagram one
might conclude that the arrival of the packet at peer B at time T2 causes B to send
a packet back to peer A at time T3. Wrong! In reality, the two peers are sending
out packets on completely different and independent schedules. That is described
this quote from one of the tutorial web pages:

“In symmetric modes each peer independently polls the other peer, but

not necessarily at identical intervals. Thus, one or the other peer might

receive none, one or more than one packets between polls.”
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Figure 9.1: The usual simple diagram of Basic Symmetric mode.

In some sense, the word poll is a misnomer, as it implies the process of asking a
question and receiving a reply. While a reply of sorts may eventually be received,
there is no guarantee the each poll is going to receive a reply, nor is there any
responsibility on a peer’s part to respond to any given poll.
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Figure 9.2: A more complex example of Basic Symmetric mode.

For example, A might be sending packets every 16 seconds while be is on a 64-
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second schedule. As a result, B might receive as many as four packets from A before
deciding to send a packet to A. In reality then, this packet is not really a response

per se to any of A’s packets (other than containing timing data regarding the latest
packet received from A). Figure 9.1 does not depict this behavior. Figure 9.2 shows
the what first volley would look like in this case. Each of the first four packets from
A to B cause B’s state to be updated but there is no immediate response from B.
Only after the fourth packet from A (when B decides that it is time to poll A) does
B send the most recent timing data from A.

These details of timing apply equally to the interleaved symmetric mode. The
general concept is that A and B independently checking their clocks against each
other and do it on independent time-tables. With an understanding of these details,
the description of modified behavior practiced by the NTP sketch will make more
sense.

9.2 Modified Behavior

The NTP implementation in this project’s firmware is a little different. It ignores one
of the basic tenets of symmetric mode – that two peers are independently measuring
their clocks against each other. In this sketch, the assumption is that all peers are
only interested in synchronizing their clocks to the sketch’s clock; the sketch does
not measure any of the peers’ clocks w.r.t its own clock.

The reason for this perversion of symmetric mode behavior is that interleaved
symmetric mode is the only way to get transmit hardstamps to a client in NTP.
The sketch is really treating symmetric peers like clients some sense of the word.

9.3 Details

Some of the basic aspects of symmetric mode behavior were skipped over until now.
The aspects of this behavior which are relevant to the modified manner in which
this sketch uses symmetric modes can now be discussed.

Figure 9.3 shows how input NTP packets are transformed to output packets in
the basic and interleaved symmetric modes. This makes is crystal clear that the two
modes are delineated by which timestamp field from the incoming packet is used
to identify a round. The basic mode uses transmit stamp fields and the interleaved
mode uses receive stamp fields.

The other difference in the two modes is that basic mode places a softstamp in
the txmt field of the outgoing packet, while interleaved mode inserts a hardstamp
from the previous packet volley.

A very important detail is how each peer uses the data being passed around to
compare its clock with a peer’s clock. Since this sketch does not measure any peers’
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Figure 9.3: NTP Symmetric Peer Modes

clocks, we have ignored it in this description. As long as the sketch inserts the
proper data into each transmitted packet the remainder is dealt with by the peer
running ntpd, and is of no further concern here.

9.4 Implementation

The NTP server implements the symmetric modes in a slightly different manner
w.r.t. packet transmit timing. The sketch treats symmetric modes partly like a
client/server association in the sense that it only transmits symmetric mode packets
as a response to an incoming symmetric mode packet. The transmitted packet is
otherwise valid in all respects. While the basic interleaved mode is supported in
this implementation, there is not much point in using it because it suffers the same
problems as client/server mode, caused by variable network delays.

One nice thing about interleaved symmetric mode is that there is no need to
create an estimated transmit timestamp and then wait until just exactly the right
moment to send it; packet processing can send out the response packet without
delay, as soon as it is ready.

Reference implementations documented extensively on various NTP-related web
sites use seven or eight state variables for each peer in the interleaved symmetric
mode. These variables have what this author finds to be confusing names. Different
names are used in this implementation. For each peer, the sketch keeps the following
state variables (this is not a complete list):

• Interleaved mode flag.

• Basic round ID; transmit timestamp from the most recent outgoing packet.
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• Interleaved round ID; receive timestamp from the most recent outgoing packet.

• Transmit timestamp from previous incoming packet; used to detect duplicates.

• Transmit hardstamp for previous outgoing packet.

9.4.1 Active and Passive Peers

NTP distinguishes between active and passive symmetric peer associations. In the
passive case, the NTP node has not been configured with the other node as a
symmetric peer. This NTP node implementation treats any symmetric mode packet
as if it came from a configured peer. As such, all symmetric mode packets are
considered to be active, not passive.

9.4.2 Peer State Allocation and Storage

Since state must be kept for each symmetric peer, this server places a limit on how
many symmetric peers are supported. This is configurable in the file NtpConfig.h.
The state data for each peer requires 40-bytes of storage.

9.4.3 What is Bogus?

Cryptic references to a packet being bogus will be found in the sketch. In NTP
parlance, this word refers to an incoming packet whose round ID (the originate
timestamp field) does not match the recipient’s idea of the current round ID. For
example, in interleaved mode the round ID is equal to the receive timestamp field
from the most recent outgoing packet. If the next incoming packet’s originate times-
tamp field does not match, it is considered bogus.

9.4.4 Peer State Management

Managing peer states works as follows.

• For each packet received, an array of peer states must be searched for a match
on the peer’s IP address.

• If the peer is found, a pointer is returned and used by packet processing as
the peer’s current state and updated as necessary.

• If there is no such peer in the array, a new entry is initialized and the pointer
returned for packet processing.

• If the array is full, then it is searched for any entries that may have timed out
and can be replaced. If so, a new entry is initialized at the timed out location
and returned. Otherwise an array-full indication is returned.
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9.4.5 Non-interleaved Mode

There is an inconsistency between on-line NTP documentation and source code in
the 4.2.8 release of NTP. On-line documents indicate that the interface to an inter-
leaved peer starts out in the interleaved mode but can fall back to non-interleaved
operation if the peer does not support interleaved mode. The source code however
implements just the opposite behavior – the interface starts out in non-interleaved
mode and will switch to interleaved mode if it receives valid interleaved-mode pack-
ets. This behavior is implemented in lines 1221 through 1237 in the file ntp_proto.c.

While the sketch does implement the ability to switch from basic to interleaved
mode, it is effectively disabled because the interface is always initialized to inter-
leaved mode. Once in interleaved mode, the receipt of basic mode packets will not
cause a switch back to basic mode. This is intentional: there is no performance
advantage to basic peer mode compared to client/server mode.

9.4.6 Client Configuration

While not specifically part of this project, below is an example of the text required
to configure the advanced variant of the Stratum Ten server as an active interleaved
peer in the ntp.conf file on a Windows or Linux client running ntpd. Change the
IP address to match what has been hard-coded in the NTP server. The iburst and
prefer keywords are optional and may be omitted if desired. The base-2 logarithm
of the polling interval is specified after the minpoll and maxpoll keywords. A
16-second polling interval (24) is shown but other intervals may also be selected.

peer 192.168.1.112 xleave iburst minpoll 4 maxpoll 4 prefer
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Chapter 10

Testing and Calibration

Notes about testing the server’s performance are presented here. These apply gen-
erally to both variants and is presented here as a separate chapter. There are two
types of testing described here:

• Internal testing generally involves measuring signals and comparing with firmware
generated values. Analysis of PLL performance by analyzing firmware debug
outputs is also part of this process.

• External testing requires connecting the NTP boxes to a test network and
analyzing performance measured at an independent node on the network (such
as a Linux PC).

10.1 PLL Performance

In this section, measured PLL performance for the basic variant are presented. Refer
to appendix B for explanation an explanation of the artifacts discussed below.

In figure 10.1 is a plot showing the phase (a.k.a time) of PPS signals measured by
the frac-N divider over about a 30-minute period. This represents typical tracking
behavior of the PLL. The raw phase samples are plotted as blue x marks while the
result filtered by the 16-tap FIR loop filter is in red. It is the filtered signal which
generates feedback corrections to the frac-N divisor.

Readily apparent are the artifacts generated by over-sampling the frac-N sub-
system as discussed in the appendices. The FIR filter does a fair job of filtering out
much of the noisy artifact behavior.

When the frac-N term k approaches an integer multiple of 64, as shown in
figure 10.2, the FIR filter becomes irrelevant. What is apparent in this figure is the
response of the PLL to a large phase step. Although there is significant overshoot,
this performance is still better overall than with loop gains lowered to eliminate most
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Figure 10.1: Typical Short-Term PLL Performance

of the overshoot. The phase variations plotted in this figure are mostly mathematical
artifacts caused by a very slow frequency drift in the system clock.
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Figure 10.2: Performance with k passing integer multiple of 64
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10.2 Network Test Configurations

Early tests compared one local NTP server to several external servers on a PC
running Windows 7. It was discovered that this version of Windows does not have
adequate clock performance to make these tests meaningful.

A better confirmation of performance was obtained by comparing the times
reported by two NTP servers built for this project. One is a basic variant with
HP55300A reference clock; the other an advanced variant with the Trimble GPS
receiver. The NTP daemon on Linux was configured to use the advanced variant as
a symmetric peer with the prefer option – this forces the daemon to use that server
as the only input to the clock discipline algorithm. This allowed a comparison of
the two NTP servers by examination of the peerstats log file.

Three different network configurations were used which are depicted in figure
10.3. These three configurations and the names used to refer to them are explained
below.

Linux PC
ntpd 4.2.8

Arduino-NTP
Basic

Arduino-NTP
Advanced

HP55300A Trimble
ICM-SMT-360

Netgear DS-108 10/100 base-T Ethernet hub Linksys WRT-320N
(running dd-wrt)

ADSL Modem
(to ISP)

Local 
NTP 

Client

Local 
NTP 

Client

Figure 10.3: Network configuration used for testing

10.2.1 Quiet

In this configuration, the Linksys router is disconnected and both NTP boxes are
connected to the Netgear router. Conceptually, the red and green arrows are deleted
in this setup. During these tests the only network traffic was NTP packets to both
NTP boxes initiated by the Linux PC.
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10.2.2 Busy

Here, the Linksys router is connected to the Netgear router (red arrow), and both
NTP boxes are connected to the Netgear router (green arrow is deleted). There
are two Windows PCs on the Linksys router running ntpd and querying both NTP
boxes. There is no NTP traffic to the NTP boxes from the ADSL modem.

10.2.3 Two Hops

In this scenario, the Busy configuration is modified by disconnecting one of the
NTP boxes from the Netgear router and re-connecting to the Linksys router (green
arrow).

10.3 Measurements

The NTP daemon in all tests was configured to output both loopstats and peerstats
log files.

10.3.1 Delay

Delay statistics are important in analyzing overall performance of the NTP servers.
With all NTP endpoints connected to the same network hub, delays between end-
points should be constant, and relatively insensitive to network traffic levels. While
there could be variable delays for an NIC to get access to send a packet, the actual
time required to send the packet should be fairly constant. Delay measurements
should also exhibit low values of jitter or standard deviation.

10.3.2 Offset

With the NTP daemon (Windows or Linux) configured to use only one of the NTP
servers as input to clock discipline, the offset statistics should be stable if the NTP
server itself is stable.

10.4 Windows 7 Test Results

Typical clock loop and offset behavior for Windows 7 is shown in figure 10.4. In
these tests, both servers were configured as interleaved symmetric peers in the Quiet
network configuration.

While the two servers are in relatively close agreement, the millisecond-level vari-
ations in offset are too large to make a meaningful comparison. This sawtooth type
of behavior is typical clock discipline performance for NTP running on Windows.
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The only thing it really demonstrates is that Windows 7 is not a suitable platform
for testing the project’s NTP servers.

8.6 8.8 9 9.2 9.4 9.6 9.8 10

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time, ฀UTC ฀hours

M
ill

i-s
ec

on
ds

Offs ets ฀ from฀C :/us ers /ntp/logs /peers . log.20160301

192.168.001.111

192.168.001.112

Figure 10.4: Clock discipline behavior on Windows 7

10.4.1 Windows 7 Test Notes

It was necessary to set the system environment variable below on Windows 7. With-
out this, ntpd would sometimes disable interpolation depending on what state the
system’s multi-media timers happened to be in when the service started. With in-
terpolation off, you only get a resolution of 1ms on NTP statistics like delay and
jitter. While enabling interpolation may cause issues when other applications mod-
ify multi-media timers, it is necessary to get the higher resolution for some of the
tests that were being run.

NTPD USE INTERP DANGEROUS=1

10.5 Linux Test Results

Refer to figure 10.3 for the network configurations shown in these graphs. The
upper plot shows delay to one of the project’s NTP boxes. The lower plot is the
same measurement using interleaved symmetric mode. Delay averages in the three
network configurations are shown with yellow, green and cyan lines on top of the
actual data points (red x’s) from the peerstats file.
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Figure 10.5: Delay measurements in different NTP modes.

The first obvious difference is that measured delay values are much less noisy
in interleaved symmetric mode (hereafter, ISM). In fact, the standard deviation of
measured delays is about six times smaller in ISM.

Ideally, measured delay should not be sensitive to network traffic levels with
everything connected to a single Ethernet hub. In client server mode, the measured
delay increases by about 50µs when the second network hub is connected. Inter-
leaved symmetric mode on the other hand shows only about a 3µs decrease with
increased network traffic.

With the third network configuration (two hops), client/server mode indicates a
larger increase in delay than with interleaved symmetric mode.

10.5.1 Impact on Accuracy

In figure 10.3 measured delays are noisier and change more with changes in network
configurations in the client/server mode. This translates directly to more noise and
larger errors in measured clock offsets. Figure 10.6 shows measured offsets to the
two NTP boxes during the same test. Raw test data is shown with x’s and running
averages with solid lines.

In figure 10.5 network traffic increases when the Linksys router is connected,
just after four hours on the X-axis. In figure 10.6, there is virtually no change in
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Figure 10.6: Offset measurements in different NTP modes.

measured offsets at four hours for interleaved symmetric mode, but client/server
mode shows a 25µs change. This is the amount of offset change one would expect
from a 50µs change in measured delay (assuming the change in delay were due to a
timestamping error).
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Appendix A

The Phase Locked Loop

There is a lot of very technical material to follow in both this and the next appendix.
It all has to do with fixing the inaccuracy in the 16MHz system clock so that we
can accurately measure time in between PPS signals.

All of this detail is included here because the author had to work this all out
to make the firmware work. This is complex to the point that it had to be written
down in some detail to get it right.

A.1 Block Diagram

In practice, the software sketch keeps Arduino’s clock in sync with the PPS pulse
generally within ±1 timer count (500ns). The processor provides a nominal 2MHz
clock to the 16-bit timer 4 (T4) which is then nominally divided by 62,500 to yield a
timer match interrupt 32 times a second. These numbers are all nominal. In reality
the processor clock is not 2MHz and requires compensation if accurate timestamps
are to be generated.

Figure A.1 shows a block diagram of how Arduino’s crystal oscillator is compen-
sated to achive the goal. The input on the left, labeled fR is the reference frequency
provided by the reference clock. In this model it is a constant value representing for
example 2MHz exactly, or 1Hz exactly (the PPS signal). This block diagram is con-
ceptual and this constant value does not appear anywhere directly in the software
– the closest equivalent would be the PPS signal coming from the reference clock.

In this model, phase is considered to be the integral of instantaneous frequency
and conversely, instantaneous frequency is the derivative of phase.

φ(t) =

∫

t

0

f(t)dt

f(t) =
dφ(t)

dt
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∫Σδ(t)

n(t)

d/dt

filter

Σ

∫ Σ loop
filter

÷ φL

φR

φC

fR

Crystal Oscillator

Σ

Feed
Forward

PLL (phase-locked loop)

Software Frac-N

Figure A.1: Phase-Locked Loop (conceptual model)

In these equations phase is in units of cycles – not radians. It is also possible to
talk of phase in units of time, nano-seconds or micro-seconds for example. When
using time units for phase one must also specify some reference frequency such as
1 Hz for example. In this example, a phase of 1µs is equal to 10−6 cycles. In what
follows phase will often be discussed in unit of time relative to a frequency of 1Hz
– the PPS pulse frequency. In this sense, the terms phase and time will be used
interchangeably below.

A.1.1 Crystal Oscillator

The crystal oscillator integrates the reference frequency plus unwanted short (n(t))
and long-term (δ(t)) errors to produce the output phase, φC .

51



A.1.2 Feed-forward

The feed-forward block differentiates this phase to estimate frequency, low-pass
filters the result and compares it to the reference frequency to generate a correction.
It then applies the correction to the fractional-N divider. This gets the resulting
frequency very close to the desired value, leaving only small errors for the PLL to
deal with. The main reason for using feed-forward in this design is to alleviate the
need for 64-bit integer math in the PLL code.

A.1.3 Phase-locked Loop

The phase-locked loop samples the output phase from the divider once per second
using the PPS signal. It also has a reference phase φR generated by integrating the
reference frequency. A correction is generated by comparing the actual phase φL to
the reference phase and running the result through the loop filter.

The loop filter contains an integrator (it is a type-I control system) to allow
frequency ramps to be tracked with zero following error.

It is useful to remember here that the block diagram is conceptual. The software
does not actually generate an infinitely increasing φR as implied; instead it counts
phase (time) modulo 32 timer cycles (one second) so there is no real need for an
infinite phase ramp.

A.1.4 Software Frac-N

Conceptually, the fractional-N block can be viewed as simply dividing the phase
output of the crystal oscillator by a variable number (determined by the output of
the PLL’s loop filter).

A.2 Feed-forward Correction

In this and following sections, additional detail is provided for individual blocks
shown in figure A.1.

To allow the PLL’s digital loop filter to run with high fractional precision in
32-bit integer math, the numerical values of the phase error must be kept relatively
small. To achieve this goal, the frequency difference between the PPS signal and
crystal oscillator is continuously measured and used to generate a feed-forward cor-
rection. This correction does not depend on the output of the fractional-N divider –
it only looks at raw timer counts accumulated between PPS signals. This removes
a majority of frequency error leaving only small offsets for the PLL to manage.

At every PPS interrupt, the number of timer clock cycles since the last PPS is
recorded. Ideally there should be two million cycles (with a 2 MHz timer clock).

52



The difference is a measurement of the clock’s frequency error. These errors are
passed through a digital filter to smooth what is mostly quantization noise due to
sampling the PPS signal with a 2MHz clock. Because the 2MHz clock is quite stable
over a period of a minute or so (not accurate – but stable), the digital filter is also
able to provide more resolution on the clock frequency error by effectively averaging
the individual frequency error measurements.

The output of the filter is then used to adjust the fractional-N ratio. In the field
of control system theory, this type of correction is called feed-forward – because the
result of the correction does not feed back into the next measurement.

The digital filtering process introduces some delay into the correction process. A
sudden change in clock frequency will not appear immediately at the filter’s output.
When temperature is changing over time, it produces a changing clock frequency
over time also and the digital filtering will lag behind the resulting frequency ramp.
This is another source of residual frequency error which is not removed by feed
forward. As a result, feed-forward correction does not remove all of the frequency
error in the clock. In addition to phase control, the feedback portion of the phase-
locked loop also removes residual errors from this process.

When the PLL first starts up, a 64-tap FIR filter is used to produce the feed
forward correction. A third order IIR filter with lower cutoff frequency is also started
in parallel with the FIR filter. Once the IIR filter has settled it is then used instead
of the FIR filter. It requires three to five minutes for this switch-over to occur.

The feed-forward design keeps the resulting integrated phase error over a one-
second interval to be typically within a few timer counts or a couple of micro-seconds.
Thus, inputs to the digital loop filter (which uses units of ns) are kept small enough
to allow 32-bit integer math to be used there.

A.3 Phased-Locked Loop

This is (in software) a typical proportional-plus-integral (PI) control loop. Phase-
locked loops are inherently non-linear and difficult to analyze; that will not be
attempted here.

Suffice it to say that feedback gains have been hand tuned to give good overall
performance. For large phase steps there is what many would consider excessive
overshoot with some ringing. However, once the loop is settled, these gains give
better tracking performance than lower values which result in less overshoot.

A.3.1 Zero Reference Phase

For reasons explained below (see the Interrupt Design section below), the PPS signal
is phase aligned to occur exactly half-way through a nominal timer cycle. This is
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achieved by adding a numeric offset of 31,250 (one half nominal timer cycle) to
measured phase (time) when computing phase error in the PLL.

A.3.2 Loop Filter

Due to the existence of frac-N artifacts1, it is desirable to pass measured phase errors
through a low-pass filter. This does not remove all artifacts and when the fractional
divisor is close to an integer multiple of 64 it will not be of much use. On the other
hand, overall loop performance is improved with the filter in place.

The low pass filter adds some delay to the loop and delay is the enemy of control
loop stability. As a result, the amount of delay has been kept to a minimum, meaning
the cutoff frequency is higher than would otherwise be desirable.

The filter implemented in software is a 16-tap symmetric FIR filter with linear
phase and has a delay of 7.5 samples (seconds).

The output of the low-pass filter is applied to a simple integrator. The integrator
and low-pass filter outputs are then summed with hand-tuned gain constants to
produce a PI (proportional-plus-integral) correction term for the frac-N divisor.

A.3.3 Loop Initialization

After initial power-up, the PPS signal will be arbitrarily aligned somewhere within
the the frac-N cycle consisting of 2048 timer cycles. It will also be arbitrarily aligned
within an individual timer cycle – not necessarily half-way through where we want
it to be.

While the loop would eventually find phase lock under these conditions it could
take a very long time. To achive a reasonable initial lock-up time, two actions are
taken when the first PPS pulse arrives.

• Hardware timers T4 and T5 are reset to a point about half-way through their
cycles. The exact value has been hand-tuned for a fast initial lock-up.

• Cycle count variables in the frac-N sub-system are initialized so the next PPS
signal will occur at the start of a frac-N cycle.

A.3.4 Holdover

With the HP55300A there is no need for a holdover function in the Arduino sketch.
The reference clock can keep accurate time without a satellite signal for a full day
or more.

When using a GPS module with PPS output in place of the HP55300A, it may
not be unusual to lose the satellite signal (and PPS) for short periods of time. In

1See the section Artifacts below.
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this scenario a holdover function starts running in the sketch. The basic holdover
operation just keeps the current frac-N divisor constant while the PPS signal is lost.
This works okay as long as temperature is not changing. With typical changes in
room temperature however, it can easily lose 40µs or more over just a 5 minute
outage.

A.3.5 Frequency Prediction

To improve on the holdover performance when temperature is changing, an experi-
mental holdover prediction block has been implemented. It uses a recent measure-
ment of frequency changes (over the last 10 minutes) to predict frequency over the
next 10 minutes and adjusts the frac-N divisor accordingly. In several tests it was
able to maintain time within about 10µs or better over a period of 10 minutes.

Once a minute, the output of the frequency feed-forward filter is saved to a
11-element FIFO. The time between first and last elements is therefore 10 minutes
and an estimate of linear frequency change can be made in this way. For the first
10 minutes of holdover, the frac-N divisor is adjusted according to the estimated
frequency ramp to improve tracking. After 10 minutes no further corrections are
provided as predictions too far in the future tend to become quite inaccurate.

If the FIFO history is not available, then the current frac-N divisor is kept
constant during holdover. The FIFO length could perhaps be enlarged to cover 20
minutes but that would probably be as far as things could be stretched.

Being experimental the feature is rather strict about applying corrections. After
any holdover event ends, a minimum of 15 minutes of valid PPS signals must occur
before the frequency ramp correction will operate again.

This capability is experimental and may be disabled in the NtpConfig.h file.
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Appendix B

Fractional-N Divider

Given a fractional-N divider running in software, the challenge becomes one of fig-
uring out what the exact phase is at any given timer count within the frac-N cycle.
This is a non-trivial problem, and the algorithm used in the sketch is explained in
this section.

B.1 Fractional-N Overview

There are many resources on the internet where one can find a tutorial on fractional-
N (or frac-N) frequency dividers. A short introduction is provided here to help
explain the process of phase computation. See other internet sources for a more
thorough explanation of frac-N.

Given a clock signal with frequency fc, we can divide it by counting cycles up
to some integer value, m to define the period of the divided clock:

fd =
fc
m

Suppose that we wish to synthesize a clock at some arbitrary frequency, fr by
dividing the clock at fc. In most cases the ratio between the two clock frequencies
will not be an integer:

r =
fc
fr

; ⌊r⌋ 6= r

Thus, simple integer division by m will result in some frequency error. The error
can be reduced by periodically dividing fc by m + 1 instead of m. If this is done
once for every n cycles of the divided clock, then the number of cycles of fc elapsed
for n cycles of the divided clock will be nm+ 1. The resulting average frequency is

fd = fc
n

nm+ 1
=

fc
m+ 1/n
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Although we’ve succeeded in creating a clock with an average frequency divided
by a non-integer value, the resulting divided clock will be jittery because every n’th
timer cycle will be a different length. Dealing with the jitter turns out to be the
real challenge, and fixing that will be discussed below. But for now let’s ignore the
jitter problem.

So now we know how to divide by m+1/n but that doesn’t give us access to all
possible integer ratios. For example we can divide by 31

2
and 31

4
, but not 33

4
. This

technique can easily be modified to do this.
Instead of adding a single clock every n timer cycles, if we add k clocks then the

total number of clocks in every n cycles will be mn+ k instead of mn+1 as we first
considered. The resulting average divided frequency now is:

fd = fc
n

nm+ k
=

fc
m+ k/n

If we’re going to add k extra cycles every n timer cycles, then just exactly when
do they get added? One could just add them all at the beginning or end. This
approach has two drawbacks:

• The cycle where these counts are added can become quite a bit longer as a
normal cycle as k approaches n.

• The hardware timer being used to divide by m will need to count to m + k
during the extended cycle. There may not be enough bits in the counter to
do this.

To get around this, the k extra clocks can be evenly dispersed, one at a time
throughout the n cycles.

Now, n is not always going to be an exact multiple of k so the number of
timer cycles between extra counts will not be perfectly even. For example with
n = 8, k = 3 we could add extra counts on timer cycles 0, 3, 6 and 8.

To implement this, a running sum, s is defined that increments by k for every
timer cycle. At the end of a full divided clock period consisting of n timer cycles,
the sum will be equal to kn – obviously an exact multiple of n. Instead of allowing
s to keep incrementing in this fashion it is examined at the end of each timer cycle
after being incremented by k. If the result is equal to or larger than n then an extra
count is added during the next timer cycle. After the next cycle finishes (i.e. after
the extra count has been clocked), s is decremented by n. In this fashion s counts
modulo-n although s ≥ n during the cycle in which a count is being added.

It would also work to decrement s by n immediately when the need for an extra
count is detected. However, doing it as described above makes tracking phase a bit
easier as described below.
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The fractional-N division process described above allows the synthesis of fre-
quency division ratios of arbitrary precision. That is, if we are willing to live with
arbitrarily large values of n. In summary, this is how hardware-based fractional-N
(a.k.a. ”Frac-N”) frequency dividers work.

B.2 The Challenge

Taking a step back to look at the big picture, the inaccuracy of the Mega’s 16MHz
system clock is the only reason that fractional-N and PLL sub-systems are necessary.
In the project version which uses the GPS 10MHz clock as the Arduino’s system
clock, none of this is required because the 10MHz clock is perfectly synchronized
with the PPS signal.

In review of the problem, consider that a UDP packet will arrive at the W5500
NIC chip on port 123 containing an NTP request. Arrival of that packet will cause
the W5500 to assert its interrupt output, which will trigger a timer 5 input capture
at some arbitrary point in between two PPS signals and at some arbitrary point
within the frac-N cycle of 2048 timer cycles. From the captured timer count, the
exact time elapsed since the last PPS signal must be determined, ideally ±250ns
(i.e. within 1

2
timer cycle). This was the most difficult task in the development of

the software.

B.3 Nitty Gritty Details

This section contains a lot of intricate math; it is documented here because the
author found it necessary to get the firmware working correctly. Methods for accu-
rately dividing the inaccurate 2MHz clock down to 1Hz±4ppb have been discussed
above. Given a timer count value anywhere within the frac-N cycle, we need to
compute the exact phase (aka time) of that count relative to the PPS signal.

The frac-N sub-system produces a 32Hz output clock which has an average fre-
quency settable in 8ppb increments. The time period between individual 32Hz
output clocks does not have this high resolution – only the average period over a
span of 64 seconds exhibits this behavior. Keeping this in mind, the average clock
period of the divided clock is

Td =
1

fd
=

m+ k/n

fc
= Tc(m+ k/n)

where,

Td is the average period of the 32Hz frac-N output clock.

fd is the average frequency of output clock.
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Tc is the true period of the (inaccurate) 2MHz timer clock.

fc is the true frequency of the 2MHz timer clock.

m,n, k are the frac-N divider parameters previously defined.

A full frac-N cycle contains n cycles of length Td so is of length (nTd). Up till
now, fc has been considered a known quantity. In this application however, the
values of m, k, n have been adjusted (by the PLL) to get a known average value
for fd or Td and fc is unknown. Specifically, the average of 32 frac-N output clock
periods is adjusted to equal one second as defined by the PPS signal.

B.3.1 Brute Force Solution

The obvious solution is to just multiply the known length of a frac-N cycle (nTd)
by the timer count relative to the start of the entire frac-N cycle (c), then divide by
the total length of a timer cycle (mn+ k):

t(c) = nTd

c

mn+ k

To make this calculation with sufficient accuracy for this project requires 64-bit
math – including a 64-bit integer division.

B.3.2 32-bit Solution

A different way to approach this problem (which can be implemented in 32-bit
integer math) is by tracking timer cycles and added timer counts. Below, the word
nominal will be used to refer to times based on the reference time period, Td. For
example, since the integer portion of the frac-N divisor is m, a nominal undivided
clock cycle is Td/m.

The true period of the inaccurate 2MHz clock, Tc can be expressed in terms of
the average period of the 32Hz divided clock Td:

Tc =
Td

m+ k/n

Consider the true time elapsed for a timer cycle of m counts (i.e. there is no
added count in the cycle). At any count (c) from 0 to m within this cycle the time
expired is:

t(c) = c Tc =
c Td

m+ k/n

Below, it will be convenient to have this expressed in terms of one nominal
undivided clock cycle, Td/m:
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t(c) = c
Td

m

m

m+ k/n
= c

Td

m

(

1−
k/n

m+ k/n

)

t(c) = c
Td

m
−

Td

m

ck/n

m+ k/n
=

Td

m
+ δ(c) (B.1)

The second term above (δ) can be viewed as a correction to the nominal undi-
vided clock period.

δ(c) = −
Td

m+ k/n

ck

nm
= −Tc

ck/m

n

At the end of the first timer cycle (c = m), the correction is:

δ(m) = −
Td

m+ k/n

k

n
= −Tc

k

n

At the end of several (e.g. α) timer cycles, assuming no extra ticks have been
added, the difference is simply α times larger:

δ(αm) = −Tc

αk

n

Recall that in running the fractional-N process a running sum s is kept which
increments by k for every timer cycle. Until the first added clock cycle this running
sum is equal to αk in the above formula, so:

δ(αm) = −Tc

s

n

Next consider the addition of an extra timer count at the end of the α’th cycle.
The correction δ is simply increased by Tc.

δ(αm+ 1) = −Tc

s

n
+ Tc = −Tc

s− n

n

Thus, adding an extra count can be handled by subtracting n from s. This is
the sought after result. To summarize the process of computing phase, return to
the full formula, not just the correction we’ve been working with.

Any timer count within the 2048-cycle frac-N period can be defined by breaking
it up into full timer cycles (α) plus a count within the current cycle (c). Referring
to (B.1) above, the true time at any such point can be shown to be:

t(α, c) = αTd − Tc

s+ kc/m

n
(B.2)

Here, α is the number of full timer cycles elapsed since zero phase was passed
(we assume that zero phase is coincident with the start of a timer cycle). c is the
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number of counts elapsed within the current incomplete timer cycle. During the first
cycle after zero phase, α = 0 and c runs from zero to m. In a cycle with an added
count, c will actually go to m + 1 at the end. s is the running sum, incremented
by k for every full timer cycle and decremented by n after any timer cycle which
included an extra count.

The numerator of the fraction in the above equation:

s+ k
c

m

includes what is essentially a pro-rated addition of k to the running sum s –
since at the end of the cycle k would be added to s, a pro-rated amount needs to
be added if we are only part-way through the cycle.

B.3.3 Artifacts

Analysis of PLL performance shows certain very obvious artifacts which are a result
of the fractional-N divider’s design. They are mathematical artifacts in the sense
that they do not necessarily represent true phase tracking behaviors but rather phase
measurement errors.

The PLL sub-system is based around an interval of 32 timer cycles (1 second).
The frac-N sub-system is based around an interval of 2048 timer cycles (64 seconds).
This difference creates some artifacts in the PLL’s behavior.

During one frac-N interval there are mn+k cycles of the inaccurate 2MHz timer
clock. First consider a case where mn + k is by coincidence a prime number. If
the frac-N divisor is adjusted perfectly, then there will be exactly mn + k timer
clocks during a 64-second interval as defined by the PPS signal. This will be exact.
However, since mn + k is prime and covers an interval of 64 seconds, there will no
intermediate 2MHz clock cycles which align exactly with any of the 63 PPS signals
in between. Every 64th PPS signal will be aligned exactly with a 2MHz clock edge
but the other 63 will not.

Now consider a second situation where mn + k just happens to be an integer
multiple of 64; in this case all 64 PPS signals within a frac-N cycle will be aligned
exactly with a 2MHz timer clock edge.

When analyzing the recorded phase (e.g. time) of PPS signals this behavior
becomes strikingly apparent. Depending on the exact value of mn + k a plot of
measured phases is seen to jump around over a range of ±250ns (1

2
clock tick) in

various patterns.
In one sense, this could be considered a form of under-sampling of the frac-N

system and it results in some funny looking analysis data which might be considered
aliasing in some sense of the word. On the other hand, it does in fact allow the PLL
to control the frac-N phase to a tighter tolerance. In the end, we put up with the
artifacts of oversampling because the overall result is a more accurate system.
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These odd behaviors are a purely mathematical artifact of the system design
and do not represent any real jitter or wander of the crystal oscillator. As such, it
is desirable to filter them out so the PLL does not attempt to follow them. This is
the reason for a 16-tap FIR low-pass filter as part of the PLL’s loop filter block.

When mn+ k is close to a multiple of 64, these artifacts can take on a very low-
frequency behavior and in this situation it is not possible to filter them out in the
loop filter, and the PLL will attempt to track them. This will result in additional
phase wander, typically of as much as ±250ns. This seems to be unavoidable and
it would require a change in the overall system design to improve it. The project
version which uses the GPS 10MHz clock for Arduino’s system clock does not have
this behavior.

Experiments with smaller values for n in the frac-N divider have been tried. From
one perspective it would seem that n = 32 would be a good choice. This would make
the frac-N cycle be exactly one second and would completely eliminate the artifacts.
In practice however, although the artifacts do vanish, the loop is unable to maintain
phase ±500ns in this case. It seems better to live with the artifacts.
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Appendix C

Firmware

The sketch file itself (StratumTen.ino) is relatively small and most of the function-
ality is implemented in several C++ classes. The standard library for the version 2
Ethernet shield had to be modified slightly to enable interrupts on the W5500 NIC
chip.

The name, StratumTen is a reference to the use of the 10MHz GPS-disciplined
clock in the advanced variant of the project.

C.1 Unresolved Issues

There is one unresolved issue at this time. It has to do with getting the current
time of day (in NTP seconds) from the Trimble ICM SMT360 GPS receiver. The
original implementation used the exact reported value and everything worked cor-
rectly. Then, at some point the time reported by the NTP server started being slow
by exactly one second. The fix was to add a second to the time reported from the
receiver. The cause of this change is not understood and could suddenly change in
the future – based on what has already happened and the lack of an explanation for
it.

The change in question is on line 282 of the file IcmSmt360.cpp.

C.2 NtpConfig.h

This is the one mandatory file that must be checked for correct options. There
are many comments in this file explaining how to set options, and a comment line
indicating the end of normal user options; don’t make changes below this line unless
you know what you are doing.

• Be sure to set the MAC address to match the value that was delivered with
the Ethernet shield.
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• Set a hard IP address for the server.

• Choose the correct option for project variant (basic/advanced) and specify
which GPS receiver is being used.

C.3 C++ Classes

Short descriptions of some (but not all) of the classes are given below.

C.3.1 Timekeeping

This virtual class provides for the management of the Mega2560’s timer 4/5 hard-
ware and provides client with exact NTP time associated with events such as UDP
packet reception.

C.3.2 Fractional-N Classes

The FractionalN class implements a standard fractional-N frequency divider in
software, using the Mega’s timer 4 (T4) in compare-match mode.

The NtpFractionalN class derives from the above two classes. It provides the
interpolation to accurate NTP time from timer values based on the equations de-
veloped in appendix B.

C.3.3 NtpPhaseLockedLoop

This class processes PPS time capture events on timer 4 (T4) and adjusts the frac-N
divisor for every PPS capture to keep the frac-N output locked to the PPS signal.
An in-depth description of this is presented in appendix A.

The class requires a reference to a frac-N instance for which it manages the
divisor. It also uses the frac-N instance to obtain phase information at PPS cap-
tures as part of the operation of the feedback loop. Feed-forward correction is also
implemented in this class.

C.3.4 DisciplinedTimers

Also derived from the Timekeeping class, the advanced variant uses this class in-
stead of fractional-N and phase-locked loop classes to manage timers.
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C.3.5 NtpServer

This class provides functions to process and reply to NTP client requests. Its con-
structor requires two class references, to a Timekeeping instance from which to
obtain timestamps and to a UDP instance so it can send the NTP reply. This class
can reply to client/server requests as well as interleaved symmetric mode packets.

While it also has the ability to respond to non-interleaved symmetric mode
packets, that ability is disabled at this time. There is no performance advantage
over client/server mode so it was not enabled.

C.3.6 Filter Classes

Several classes are defined which implement discrete time digital filters, both FIR
and IIR variants. These are used in by the PLL class in filtering feed-forward
corrections and in the main loop filter block.

C.3.7 HP55300A

This class provides communications with the HP55300A through an RS232 interface
to its Time of Day port. The single purpose of this class is to obtain current calendar
time and associate it with a specific PPS pulse. This allows the frac-N class instance
to know the exact NTP time.

C.3.8 IcmSmt360

Provides communications with and control of the Trimble GPS module. It can
obtain time-of-day, check receiver health and status and initializes desired options
in the receiver.

C.3.9 NtpTime

This utility class provides functions to determine NTP time from UTC calendar
dates and times.

C.3.10 Arduino library changes

The Ethernet2 library has been slightly modified to enable interrupts on the WizNet
W5500 NIC chip. The standard library does not use interrupts from the W5500 so
this change causes no conflicts. Whenever a UDP socket is opened, the RECV event
is enabled to cause an interrupt from the W5500. This will then occur when a NTP
client request is received. The interrupt is wired to the input capture pin for timer
5 and this provides a hardware timestamp on incoming NTP requests.
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The firmware package includes a library named EthernetNtp which contains
these changes.

This design might also work with the original Ethernet shield using the WizNet
W5100 NIC chip but that has not been tested. It is an exercise left for the reader.

C.4 Fudge

There is what this author finds to be a somewhat annoying term in the world of
NTP, which goes by the name fudge. This word is often used to name variables in
software with no additional explanation. It is annoying because to the uninitiated
it conveys only a vague and ambiguous meaning. Other than to complain about it
here, the term is not used in this document, nor in the software.

What the term refers to (as far as this author can discern) are small time offsets
used to fix errors in generated timestamps. Sometimes it compensates for controlled
software delays and other times it is a hand-tuned offset covering a multitude of sins.

C.5 Hidden Interrupts

Under the hood, Arduino is generating interrupts all the time. If left un-managed,
this would interfere with accurate timing and cause semi-random jitter in the NTP
server’s transmit timestamps.

• Timer0 is used internally by the millis() and micros() functions. It runs at
one-64th of the system clock frequency regardless of the value of F_CPU. and
generates several hundred interrupts per second. This can easily interfere with
the generation of accurate transmit timestamps. A quick count of instruction
cycles in the overflow ISR for Timer0 gives roughly 90 cycles or 9µs spent in
the ISR on average (with a 10MHz clock).

• Serial ports use interrupts for both sending and receiving data. These inter-
rupts can also interfere so it is important to ensure that no serial I/O is active
while processing an NTP request. This sketch uses Serial0 for USB commu-
nications, and Serial1 for GPS communications. With the exception of USB
data input from a host computer it is possible to ensure that no serial I/O is
active during NTP request processing.

C.5.1 Solution

There are two parts to managing interrupts to avoid errors in transmit timestamps.
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1. Keep track of when serial I/O is active and do not respond to NTP requests
during those times. This presumes that there is no incoming I/O from the
USB port. Other than that, the sketch decides when to initiate serial output
to the USB port and that is easily managed.

Once everything is up and running, there will infrequent I/O to the GPS
receiver so this does not cause very many NTP requests to be skipped.

2. Stop Timer0 during the time-critical section while responding to an NTP
request. This will work as long as the Ethernet library does not use Timer0,
and that does seem to be the case. This will result in the loss of roughly 1ms
of time for every NTP request received. The sketch is not using these timers
for anything critical so the lost time is of little concern.

(a) If less impact on millis() and micros() is desired, then after timestamp
generation is complete and the transmission kicked off, manually add the
approximate amount of missed time to the timer value and associated
overflow variables, then re-start the timer. See wiring.c for the relevant
code and variables.
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Appendix D

NTP Timestamp Calculations

For the purpose of debugging, these calculations provide useful insight. The question
is, what happens if an error is made striking the transmit timestamp?

t2 = t1 + δ1 + ǫ

t3 = t2 + ρ = t1 + δ1 + ǫ+ ρ

t4 = t3 − ǫ+ δ2 = t1 + δ1 + ρ+ δ2

The NTP offset formula is:

o =
t2 + t3 − t1 − t4

2
(D.1)

=
2t1 + 2δ1 + 2ǫ+ ρ−−2t1 − δ1 − ρ− δ2

2
(D.2)

=
δ1 − δ2 + 2ǫ

2
(D.3)

o = ǫ+
δ1 − δ2

2
(D.4)

The NTP delay formula is:

d = t2 + t4 − t1 − t3 (D.5)

= 2t1 + 2δ1 + ǫ+ ρ+ δ2 − 2t1 − δ1 − ǫ− ρ (D.6)

= δ1 + δ2 (D.7)
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This can be extended to consider the effect of an error in striking the transmit
timestamp. Simply let

t3 = t1 + δ1 + ǫ+ ρ+ ǫt (D.8)

This leads to:

o = ǫ+
δ1 − δ2

2
+

ǫt
2

(D.9)

(D.10)

d = δ1 + δ2 − ǫt (D.11)

The net result is that an positive error in striking the transmit timestamp shows
up as an equal decrease in measured delay and half as much of an increase in mesured
offset.
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Appendix E

NTP Full Packet Structure

Here is an accounting of the entire on-wire packet structure of an NTP client/server
or peer mode packet. This includes all of the enclosing bytes that will be added at
lower levels in the protocol stack. It is valid for 100 base-TX Ethernet.

• Preamble, 7 bytes

• SOF, 1 byte

• Source/destination MACs, 12 bytes

• Length, 2 bytes

• Payload

– IPv4 header, 20 bytes minimum

– UDP header, 8 bytes

– UDP payload, 48 bytes (the NTP packet)

• FCS (checksum), 4 bytes

Ethernet frame overhead is 26 bytes, plus another 28 bytes for IPv4 and UDP
headers for a total overhead of 54 bytes. Thus a 48 byte UDP payload requires a
total of at least 102 bytes (816 bits) to be transmitted at 100Mb/s over the wire.
Total transmit time is 8.16µs.

Packets with authentication are closer to 1000 bits but this project does not use
or support them.
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Appendix F

Handy-Dandy Acronym Decoder Ring

GPS Really? You are supposed to know this one already. Try the Internet.

IDE Integrated Development Environment. A friendly computer program and en-
vironment which makes it easier to create and test computer programs.

NIC Network Interface Controller. This is the integrated circuit which is directly
connected to the Ethernet cable and provides the hardware level electrical
interface.

NTP Network Time Protocol.

PCB Printed Circuit Board.

PPS Pulse-Per-Second. This is an electrical output from a GPS receiver which
provides an electrical pulse exactly once every second, on the second.

TCXO Temperature Compensated Xtal Oscillator. Xtal is a funny way to spell
the word crystal, used mostly by engineers.

UDP User Datagram Protocol. A low-level, low overhead data transfer technique
used to send data over Ethernet.
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