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Much of the information here has been gathered from various postings on the 
internet. This document summarizes what has been already made public and 
adds a little more to the pile of knowledge. 

The description is broken into two parts or layers which are named in 
accordance with the standard OSI model for network communications. While 
this may not be a perfect use of the model, it serves well enough for this 
purpose.  

There is one final introductory point. This document uses the word "protocol" 
to refer to the overall collection of the two layers (physical and data link). 
Again, perhaps not in agreement with other uses of the word "protocol", but 
that's how it is used here. 
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The Physical Layer 
This first section describes how bits are encoded into the RF signal. The quick 
summary is that all sensors listed here use on-off keying -- in other words the 
RF signal is either on full or completely off. The on/off state is varied over 
time to send the data...it is a lot like the old Morse code. 

Oregon Scientific Protocol Versions 1.0, 2.1, 3.0 

At the physical layer, RF transmissions use on-off-keying (OOK) with Manchester 
coding on a carrier frequency of 433.92MHz. See the Wikipedia entry on 
Manchester coding for more information or consult a basic text on digital RF 
communications. 

All OS protocol versions use the “normal” polarity definition of Manchester 
coding. This convention requires that a zero bit be represented by an off-to-on 
transition of the RF signal at the middle of a clock period. Another way to 
describe this is that the bit value is equal to the RF signal state before the 
transition. 

By definition, RF transitions must occur in the middle of each clock period. In 
this document, that point will be designated by an integer number. The 
boundary between two clock periods will therefore be equal to an integer plus 
one half. 

OS version 1.0 sensors transmit bits with a clock rate of approximately 342Hz, 
while version 2.1 and 3.0 sensors use a bit rate of 1024Hz. In all version 2.1 and 
3.0 sensors measured to date, this rate does not vary by more than a few 
tenths of a Hertz. 

Sample recordings of RF messages are shown in the appendix at the end of this 
document. 

OS Version 2.1 Message Formatting 

For version 2.1 sensors only, each data bit is actually sent four times. This is 
accomplished by first sending each data bit twice (inverted the first time), 
doubling the size of the original message. A one bit is sent as a “01” sequence 
and a zero bit is sent as “10”. Secondly, the entire message is repeated once. 
Some sensors will insert a gap (about 10.9 msec for the THGR122NX) between 
the two repetitions, while others (e.g. UVR128) have no gap at all. 

For an example of this, consider the message “111101010111” as it would be 
sent by a version 2.1 sensor. First an inverted copy of the message is created, 
and then interleaved with the original message, taking the inverted bit first. 



 Oregon Scientific RF Protocols 

 Page 3 of 40 

Original Message:  1  1  1  1  0  1  0  1  0  1  1  1 
Inverted Message: 0  0  0  0  1  0  1  0  1  0  0  0 
Transmitted Bits: 01 01 01 01 10 01 10 01 10 01 01 01 

When decoding a version 2.1 message, only every other bit need be used (and 
possibly inverted, depending on whether the first or second bit is kept). If the 
second bit in each bit pair is kept, no inversion is required. 

It should be apparent for version 2.1 messages now, that one can assume the 
opposite polarity for Manchester coding (e.g. a zero bit is represented by an 
on-to-off transition in the RF signal) – this only changes which of the two 
interleaved bit streams is considered to be inverted. 

OS Version 1.0 Message Formatting 

These sensors also repeat each message once, but do not repeat each bit. 

AcuRite VN1TX Integrated Sensor Suite Formatting 

At the physical layer, this sensor uses OOK combined with pulse-width 
modulation (PWM). A one bit is transmitted with a long RF pulse and a zero bit 
with a short RF pulse. All RF off-to-on transitions occur on a regular time 
interval of approximately 620 microseconds or at a rate of about 1600Hz.  

AcuRite 00592TXR Tower 

OOK at the physical layer, identical to the VN1TX. 

Ambient Weather WH2C 

This sensor uses PWM like the VN1TX, but a one bit is coded as a short pulse 
and a zero bit as a long pulse. The preamble consists of eight one bits with no 
special timing compared to the rest of the transmission. Pulse widths are either 
500us or 1500us. All off periods are 1000us.  

Ambient Weather F007TH 

Manchester coding is used at the physical layer by this sensor. Clock rate is 
1024Hz within a very small window of variation. The preamble contains a total 
of 13 bits; the first 11 are ones, followed by a 01 sequence. The next bit begins 
the data frame. 

SL-109H and AcuRite Sensor Formatting 

These sensors, while still using OOK for modulation, use a completely different 

encoding for bits. Each RF pulse is always 500µsec long, and the bit value is 
encoded in the time spacing between pulses. This document will refer to this 
modulation format as "pulse-spacing modulation" or "PSM" in this document.  
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In addition to the OS SL-109H, AcuRite models known to use PSM are 00955, 
00964TX and 00606TX. 

With all of these sensors, each message is repeated multiple times -- four for 
the SL-109H, about ten or so for the AcuRite 00955 and six for the AcuRite 
00606TX. 

For the purposes of this document, pulse spacing is defined as the amount of 
time for which the RF signal is "off" between pulses. Using this definition, a 
"zero" bit is indicated by a pulse spacing of 2 msec and a "one" bit by a spacing 
of 4 msec. The end of the message is indicated by an RF off period of 9 msec. 
Following this long "off" period, another repetition of the message may follow, 
or the RF signal will remain off if there are no more repetitions to follow. 

RF Pulse Widths 

The duration of Manchester-coded RF pulses is exactly either ½ or 1 data clock 
period. However, the pulse widths seen in actual practice will vary from these 
ideals. There are two major reasons for this. First, the sensor itself may not be 
sending RF pulses with the ideal widths. Secondly, the receiver will often 
modify the width of received pulses as an artifact of its design. 

A significant design challenge for receiver firmware is to be tolerant of these 
pulse width variations while still accurately decoding signals from the desired 
set of sensors. 

At a typical receiver, OS version 2.1 and 3.0 signals exhibit shortened RF pulse 
widths (often) by truncating the end of the pulse, not the start of the pulse). 
As a result, RF transitions do not occur on exactly regular time boundaries and 
may be displaced in time from data clock edges. Pulses are shortened by about 
138us for v3.0 sensors and 93us in v2.1. 

Version 1.0 sensors have the RF pulses lengthened instead of shortened. 
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The Data Link Layer 
This next layer up consists of "frames" which are groups of bits transmitted as a 
whole, unbroken unit. Although the OSI model has other uses for the word 
"packet", we'll refer to an OSI frame here also as either "packet" or "message". 
Higher levels in the OSI model don't really apply well to this topic and we leave 
them out of consideration here. 

OS Version 2.1 and 3.0 Protocol Data Frames 

Message data is best described in a “nibble-oriented” fashion (a nibble is 4-
bits). Figure 1 depicts the message structure of version 2.1 and 3.0 messages. 
The size of each block (in nibbles) is given in parentheses. 

Preamble (4/6) Sync (1) Payload (variable)

Checksum (2)

Post-amble (2/5)

Sensor ID (4) Channel (1) Rolling Code (2) Flags (1) Data (variable)

RF Message Data Layout
 

Figure 1. Layout of version 2.1 and 3.0 messages 

Both 2.1 and 3.0 protocols have a similar message structure containing four 
parts.  

1. The preamble consists of “1” bits, 24 bits (6 nibbles) for v3.0 sensors 
and 16 bits (4 nibbles) for v2.1 sensors (since a v2.1 sensor bit stream 
contains an inverted and interleaved copy of the data bits, there is in 
fact a 32 bit sequence of alternating “0” and “1” bits in the preamble). 

2. A sync nibble (4-bits) which is “0101” in the order of transmission. With 
v2.1 sensors this actually appears as “10011001”. Since nibbles are sent 
LSB first, the preamble nibble is actually “1010” or a hexadecimal “A”. 

3. The sensor data payload, which is described in the “Message Formats” 
section below. 

4. A post-amble (usually) containing two nibbles, they seem to be a CRC-8 
checksum but the specifics vary from sensor to sensor. At least one 
sensor (THR238NF) sends a 5-nibble post-amble where the last four 
nibbles are all zero. 
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The number of bits in each message is sensor-dependent. The duration of most 
v3.0 messages is about 100msec. Since each bit is doubled in v2.1 messages, 
and each v2.1 message is repeated once in its entirety, these messages last 
about four times as long, or 400msec. 

OS Version 1.0 Data Frames 

Version 1.0 sensors have a simpler format as shown in figure 2 below. 

1. The preamble contains twelve “1” bits. 

2. The sync section consists of a long off period (4.2msec), a long RF pulse 
(5.7msec) and another long off period (around 5msec). 

3. The first data sample point (clock edge) is not always marked by an RF 
transition and must be measured from the end of the long sync pulse. 

4. The data payload is fixed length since all version 1.0 sensors can only 
measure temperature. 

5. These sensors do not transmit a post-amble. 

 

Figure 2. Layout of version 1.0 messages 
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AcuRite VN1TX (aka 5-in-1) Data Frames 

Figure 3 shows this layout. It is a bit more complex than other formats in the 
sense that information is substantially split across byte and nibble boundaries. 

 

Figure 3. Acu-Rite VN1TX Message Format 

The checksums are simple modulo-256 sums of all preceding bytes (not a sum 
of nibbles). 

There are two types of message sent; one contains wind speed/direction and 
rainfall data. The other provides wind speed, temperature and humidity values.  

One post on the wxforum web site1 stated that reported wind speed is the 
highest speed measured during each 18-second period within a 4-second  
sampling window. See below for conversion of the reported integer value to 
km/hr. Wind direction mapping from integer value to direction is also 
convoluted. 

Temperature is unsigned in units of 0.1 degF above -40F. Divide the value by 
ten and subtract 40 to get temperature in degrees F. 

Rain is just bucket tip count, with 0.01 inch per bucket tip. 

The fifth nibble (upper nibble of the 3rd byte) contains status information. 
Right now it is only known that with all okay, the binary value is '0111'. This 

                                         

1 http://www.wxforum.net/index.php?topic=25705.msg247980 
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changes to '1011' when batteries are low. It is possible that bit 3 is a flag bit, 
summarizing all status while bit 2 is a "battery okay" bit. These are just guesses 
at this point. 

When batteries get very low, one unit tested stops sending the type "1" 
message, and the third repetition of data in the type "8" message contained 
different temperature/humidity values than the first two repetitions. 

There are currently several unknown bits in this message format. For example, 
nibbles 2,3,4 always seem to be "A9C"; is this an identifier sequence or 
something else? 

When batteries get really low, the unit seems to cease sending the wind/rain 
message and the data in the third message repetition has a different value for 
temperature and humidity than the first two copies. The actual values are a 
temperature of 49.4F and a humidity of 95%. 

VN1TX Wind Speed Conversion 

Raw sensor data is reported for wind speed: the number of full cup rotations 
measured in a 4-second period. Furthermore, being reported once every 18 
seconds, the value is the highest 4-second rotation count during the 18-second 
period.  

The VIS reader app for AcuRite shows wind speed in kph to two decimals. 
Comparing the data record numbers to reported speed by VIS reader in km/hr 
yields the following wind speed formula. 

km/hr = spd x 0.8278 + 1.00 

where spd is the integer value from the message (revolutions per four seconds). 
The addition of the constant is performed unless spd is zero in which case kph 
is also zero. This equation comes from a least-squares fit to VIS reader values 
and fits their reported wind speeds to within +-0.005kph (e.g. one-half 
significant digit). 

Expressing this in cm/sec and converting "spd" to revolutions per second (f = 
spd/4), we have: 

cm/sec = f x 91.97 + 27.78 

Physical measurements of the anemometer yield a cup center radius of 
Rrc=5.2cm and a cup half-width of Rc=2.2cm. From this we can calculate the 
anemometer's K-factor: 

K = 91.97 / (2 x PI x 5.2) = 2.8 
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This is fairly low as K-factors go but is in the realm of a believable number. And 
for those interested in anemometer design, the Rc/Rrc ratio is about 0.42 for 
this anemometer. 

AcuRite 00592TXR Tower Data Frames 

Packets are seven bytes long with a single extraneous zero bit at the end which 
can be discarded. Data is transmitted in big-endian order per byte, and multi-
byte data is also in big-endian order. 

 

Figure 4. AcuRite 00592TXR Tower Message Data Format 

The channel is encoded in the two MS bits of the byte, A=11, B=10, C=00. The 
remaining bits of the channel byte seem to be static and are 100000. The 
status byte is 0x44 when battery voltage is above 2.5 volts and 0x84 when 
battery is below 2.5 volts. 

The RH and temperature bytes only contain seven bits of data each, the MSB is 
a parity bit for even parity and this can be used as part of a frame validity 
check. None of the other message bytes appear to contain parity bits. As a 
result, RH data consists of seven bits and temperature data contains 14 bits. 

RH is in simple binary with units of percent. 

Temperature is in 0.1 degree Celsius units with a 100.0C offset. To get 
temperature then, divide the binary value by 10 and subtract 100. To get the 
binary value, shift the seven LSBs of the first temperature byte left 7 bits and 
add the 7 LSBs of the second temperature byte. 

The checksum is a simple modulo-256 sum of the preceding six bytes. 

PSM Data Frames 

Figure 5 shows these two message layouts. The SL-109H includes a 4-bit 
checksum while the AcuRite 00955 message has none. Both of these message 
formats transmit each nibble in MSB-first order -- opposite to the order used by 
all other OS formats. 

SL-109H 

The SL-109H message is 38-bits long and begins with a 4-bit checksum. This 
checksum is computed by right-aligning the two-bit channel number in a 
nibble, then summing in with the rest of the message nibbles. Relative 
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humidity is sent in percent, in BCD format with the MSD first, while 
temperature is a 12-bit signed binary value with the LSB equal to 0.1 degrees 
Celsius. Currently, the contents of the status nibble are unknown -- or they 
may serve some other purpose. 

Here is an example of an SL-109H message: 

6-0-560C142C 

The first nibble (6) is followed by a 2-bit channel code ("-0-"), then the rest of 
the message nibbles. We have the following values for this message: 

• Checksum nibble is 6 

• Channel code is 0 (two bits) 

• Relative humidity is 56% 

• Temperature in deg C is (0.1 x 0x0C1) = 0.1 x 193 = 19.3 deg C 

• Status nibble is zero 

• Rolling code is 0x2C 

For each transmission, this message is typically repeated three times. 

 

Figure 5. AcuRite and SL-109H Formats 

AcuRite 00955 

A typical 24-bit message from this sensor would look like this: 

1270C18 
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Here, the first two bits have been placed into the first nibble's LSBs and the 
last nibble contains only two message bits in its MSBs. As indicated in figure 3, 
we have: 

• Rolling code is 0x127 

• Temperature in deg C is (0.1 x 0x0C1) = 0.1 x 193 = 19.3 deg C 

• Status bits are (in binary) "10" (these are the two MSBs from the last 
nibble). One of these bits seem to indicate whether the transmission was 
caused by pressing the TX button or not. The other bit may be battery 
status, but that needs to be verified. 

AcuRite 0964TX Messages 

This sensor transmits PSM just like the 00955 model, but nibbles are sent LSB 
first (unlike the 00955), and are 9 nibbles long (36 bits). For example, the value 
"3" is sent as the series of bits "1100" in little endian order -- not "0011" which 
would be big endian order. 

Channel number switch setting is encoded in the two LSBs of the 2nd nibble. 
The correspondence between channel switch and the bits is as follows: 

Ch 1 ==> 0x02, Ch 2 ==> 0x01, Ch 3 ==> 0x11 

Multiple-nibble values are sent in little-endian order. An example 0964TX 
message is below (these nibbles have been interpreted in little endian order): 

8602EF020 

The "8" and two MSBs of the 2nd nibble are a rolling code; for this example it is 
'1000 01' in binary. This would be represented as '01 1000' taking the second 
nibble as the big endian so the rolling code could be called 0x21 in big endian 
order or 0x18 in little endian order. The rolling code seems to vary with 
temperature, humidity and battery voltage. 

The next two bits ('10') are the channel number, in this case the switch is set to 
position "1".  

This is followed by the status nibble of zero; the LSB will become a one if the 
battery is low. This transition occurs somewhere around 2.6 volts. 

Next is the temperature "2EF" is in little endian order, so is really "FE2" as a 
signed value and is equal to -30 which represents -3.0C.  

The BCD RH value is 20%, but in little endian order is "02".  Finally the check 
nibble is the sum of all previous nibbles modulo 16 but with all bits inverted. 
(The sum modulo-16 here is 0xF, which inverts to 0x0). 
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AcuRite 00606TX and 00782W3  

These sensors have identical formats and add yet more variation in data 
encoding. Data bits are sent in big-endian order and nibbles are also in big-
endian order (opposite to the 0964TX sensor). The data packet length is also 
different at 32 bits. 

The status nibble's MSB is a "battery okay" flag which is normally one. It goes to 
zero when the battery drops below about 2.6 volts or so. 

Temperature is a signed 12-bit value with resolution of 0.1C. For example, 
25.6C is encoded as the value 256 (0x100 hexadecimal). A value of -0.1C is 
encoded as -1 (0xFFF hexadecimal). 

There is an 8-bit hash code appended to check message integrity. It is the same 
algorithm as described for the Ambient Weather F007TH sensor below with two 
minor modifications. 

1. The hash code value is initialized to zero instead of hexadecimal "0x64". 

2. Start with the fifth value in the LFSR sequence depicted for the F007TH 
sensor -- 0xF1 instead of the first value, 0x3E. 

Ambient Weather WH2C Sensor 

The full message contains six bytes or 12 nibbles. The preamble is one byte and 
consists of 8 ones.  

This sensor provides an 8-bit CRC computed on all message data except the 
preamble, using a polynomial of 0x131. The register initialization is zero for 
this CRC. Nibbles are sent MSB first, and multiple-nibble fields are in big-endian 
order. 

 

Figure 6. Ambient Weather WH2B Data Format 

Below is a sample WH2C message: 

4950FA3D4E 

The rolling code here is "95", temperature is "0FA" (250 decimal) which 
represents 25.0C and the humidity is "3D" or 61%. The CRC-8 byte is "4E" which 
includes all data starting with the ID/status nibble. 
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A low-battery condition does not appear to be part of the message and the unit 
will transmit messages with battery voltages as low as 1.7 volts (fresh batteries 
are 3.0 volts). 

Ambient Weather F007TH 

Each data frame here is six bytes, with the entire message including preamble 
is sent three times with no delay between repetitions. All data is sent big-
endian order, bits and bytes. 

Because the preamble is 13 bits, each successive message repetition is shifted 
one bit relative to byte or nibble boundaries. Extracting the repeated messages 
therefore requires a one or two-bit shift for the 2nd and 3rd copies 
respectively.  

The fixed ID is followed by a one byte rolling code. The channel number is in 
the lower three bits of the next nibble. The upper bit always seems to be zero 
and no low battery indication is apparent anywhere in the data frame. 

Temperature is encoded in the next 12 bits. It is in units of tenths of a degree 
Fahrenheit with a -40 degree offset. Multiply the integer value by 0.1 and 
subtract 40 to get temperature in Fahrenheit. 

Relative humidity is in the next byte as an integer value in percent. 

 

Figure 7. Ambient Weather F007TH Data Format 

F007TH Hash Code 

This sensor does not use a simple checksum or even a more advanced CRC. 
Instead data integrity is verified by a hash code, generated by multiplying the 
message bits with the byte sequence generated by a linear feedback shift 
register (LFSR). This algorithm has been referred to as "an LFSR-based Toeplitz 
hash" in some of the literature. We can thank "Ron" at this blog: 

https://eclecticmusingsofachaoticmind.wordpress.com/2015/01/21/home-automation-
temperature-sensors/ 

for reverse-engineering this hash algorithm. Great job Ron! 

The easiest way to explain the algorithm is in two parts. The first part is the 
LSFR design used to generate a sequence of bytes. 
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Start with an 8-bit register initialized to the value 0x7C. Generate a number of 
values equal to the message size in bits by repeating the following operations 
once for each bit.  

• Rotate the register right one bit. 

• If the bit shifted out of the LSB and into the MSB during the rotation was 
a one, then exclusive-or the value 0x18 into the register (i.e. flip the 
state of bits 3 and 4). Do this after the rotate operation. 

• The register value after these two operations is the sequence value to 
be stored. 

Perform these steps once for each bit in the message. If the message contains 
40 bits for example (as with the F007TH message) then you will need to 
generate a sequence of 40 bytes. Because this sequence does not depend on 
the data message contents and can be pre-computed once and stored to save 
time. 

The second part of the hash algorithm combines the LSFR sequence with 
message bits to form the final hash value. 

To compute the message hash value, sequence through the 40 message bits in 
the order they were received, starting with the ID byte (0x45). Since 
everything here is big-endian, that means proceeding from MSB to LSB.  

Start by initializing the hash register to the value 0x64. As the message bits are 
read, for every bit in the message that is a one, exclusive-or the corresponding 
value from the LSFR sequence into the hash register. For example, if the 17th 
bit is a one, then take the 17th value from the LFSR sequence and exclusive-or 
it into the hash register. If the message were all zeros, then nothing would be 
added to the hash register and the result would be the initial value of 0x64. 

LSFR Sequence Details 

For clarity, the LFSR design used by the F007TH is shown pictorially below. The 
initial bit values (0x7C) are show in the boxes. 

 

Figure 8. Linear Feedback Shift Register 



 Oregon Scientific RF Protocols 

 Page 15 of 40 

This particular LFSR sequence repeats every 127 values. Therefore, even for a 
very long message, it would only necessary to compute a table of 127 values 
and use the message bit number modulo 127 as an index into the table.  

For reference, below are the 127 hexadecimal values generated by this LFSR. 
Only the first 40 values are required for use with F007TH data frames. 

3e 1f 97 d3 f1 e0 70 38 1c 0e 07 9b d5 f2 79 a4  
52 29 8c 46 23 89 dc 6e 37 83 d9 f4 7a 3d 86 43  
b9 c4 62 31 80 40 20 10 08 04 02 01 98 4c 26 13  
91 d0 68 34 1a 0d 9e 4f bf c7 fb e5 ea 75 a2 51  
b0 58 2c 16 0b 9d d6 6b ad ce 67 ab cd fe 7f a7  
cb fd e6 73 a1 c8 64 32 19 94 4a 25 8a 45 ba 5d  
b6 5b b5 c2 61 a8 54 2a 15 92 49 bc 5e 2f 8f df  
f7 e3 e9 ec 76 3b 85 da 6d ae 57 b3 c1 f8 7c .. 

Rolling Codes 

Many sensors use rolling codes as a means to reduce the likelihood of 
interference between neighbors. These are typically pseudo-random values 
with the intention that a sensor will power up with a different rolling code 
every time batteries are installed. With some sensors, these are often just 
based on current measurement values of temperature and/or humidity; if a 
sensor is powered up with the exact same temperature and humidity then the 
rolling code may always be the same. Other sensors may introduce additional 
random factors to prevent this. 

Either way, rolling codes are both a blessing and a curse. The effectively 
increase the number of discrete channel settings for each type of sensor. On 
the other hand, because rolling codes cannot be set directly by the user they 
are also a nuisance.  
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Protocol Summary 

The table below summarizes the differences between the three different 
versions. 

Protocol 
Version 

Bit Rate 
(Hz) 

Manchester 
Polarity 

Preamble 
Bit Count 

Bits 
Doubled 

Message 
Repeated 

RF Pulse 
Length 
Offset 

 
1.0 342 Reverse 12 No Yes +255 µsec 

 
2.1 1024 Normal 32 Yes Yes -96 µsec 

3.0 1024 Normal 24 No No -138 µsec 
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Decoding RF Messages 
 

This section describes techniques which may be used to decode data frames 
from the various sensors described above. 

Decoding Hardware 

Reception and decoding is possible using an Arduino board combined with one 
of the inexpensive 434MHz receiver modules which are readily available. 

Hardware available for decoding on the Atmel processor includes a hardware 
timer with an edge-triggered sampling input. Edges on the trigger input will 
cause the timer value to be latched and a processor interrupt is then 
generated. One easy way to handle decoding then is not to attempt clock 
recovery, but to examine the time difference between transitions on the OOK 
RF signal. 

Classifying Time Intervals 

The decoding algorithm works by classifying time intervals between RF 
transitions (on-to-off and off-to-on) as either short or long.  

Because the RF pulses are shortened, separate time thresholds are used for 
classifying the time period (short or long) depending on the RF state (on or 
off). Based on the data rate (1024Hz) and the two amounts by which pulses are 
shortened (96us and 138us), the table below shows the expected values of time 
intervals (in microseconds) based on the protocol version and RF state. 

There is a wider range of timing variability with version 1.0 sensors and the 
table indicates the range of values seen among different sensors. 

 

Protocol Version 
RF On RF Off 

Short Long Short Long 

Version 2.1 396 884 581 1069 

Version 3.0 349 837 628 1116 

Version 1.0 (preamble/data) 1450-1720 2920-3180 1219-1480 2680-2940 

Version 1.0 leading sync off -- -- -- 4200-4500 

Version 1.0 sync pulse -- 5500-5700 -- -- 

Version 1.0 trailing sync off -- -- -- 5200-5500 

AcuRite RF pulse width 400 600   

AcuRite short off period   1700 2400 

AcuRite long off period   2400 4300 

AcuRite separator off period   8500 10000 
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AcuRite VN1TX PWM 198-228 385-422   

AcuRite VN1TX sync 605-678  605-678  

 

With the VN1TX, RF off interval length is not of any concern when data is being 
sent because it is only the RF on pulse width which determines the data bit. 
When looking at the AcuRite pulse widths at the input signal to the transmitter, 
values are very stable, 214usec for short pulses (except last interval in each 
group which is 207usec, 405-406usec for long pulses and 612-613usec for sync. 
The variation seen above is assumed to be mostly due to the receiver, although 
there could be some variation in the time between the input signal to the 
transmitter and the actual start of the RF pulse. 

Averaged thresholds for classifying time intervals as short or long have been 
determined. Times given in the table below are in microseconds. Time 
intervals which fall outside the “Short Min” or “Long Max” values are 
considered invalid. These are for version 2.1 and 3.0 sensors. 

 

RF State Short Min Short Max Long Min Long Max 

Off 400 850 850 1400 

On 200 615 615 1100 

 

These averaged thresholds only vary by about 20 µsec from the ideal threshold 
that would be chosen for either version of sensor (2.1 versus 3.0).  

A small improvement in performance might be possible by using different 
threshold values for each protocol version – which would be possible after the 
preamble is identified and the protocol version is known. 

Additional measurements of version 1 sensors have show a large variability in 
the transmitted time intervals. RF "on" pulses as short at 1450 usec have been 
seen, suggesting that the lower limit should probably be set just above the 
maximum on pulse length for version 2.1 and 3.0 sensors (which is 1400usec). 
The current set of values in the table below are used in the current Arduino 
sketch for WSDL WxShield. 

A reasonable set of thresholds for version 1.0 sensors (in micro-seconds) is 
shown in the table below: 

RF State Short Min Short Max Long Min Long Max 

Off 970 1950 1950 3100 

On 1404 2400 2400 3400 

Sync Begin (Off)   4000 4600 

Sync (On)   5400 5985 
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Sync End (Off)   5000 5600 

Sync End (Off)   6480 7100 

 

Note: The two “Sync End” intervals correspond to the two cases where the first 
data bit is a “1” or “0” respectively. 

Decoding Using Time Intervals 

The decoding algorithm works by capturing a timer value when RF transitions 
(on-to-off or off-to-on) occur, and calculating the time interval between 
successive transitions. These intervals are classified as either short (one-half 
clock period) or long (one full clock period). 

An integer counter keeps track of time in units of one-half clock tick; this 
counter’s value will be called “half-time”. After being properly initialized, 
half-time is incremented by one when a short interval occurs and by two for 
long intervals. Half time is a very useful quantity for decoding RF messages: 

• When half-time is even, we are at the middle of a clock period. The 
transition occurring at this point determines the bit being transmitted. 

• When half-time is odd we are at the boundary between two clock periods. 
Transitions occurring here are of no interest in determining transmitted 
bits. 

• When half time is even, dividing it by two yields the current message bit 
number2. 

Using half-time, some very simple logic can be used to decode the RF signal. 

Decoding Messages 

When a transition falls on a boundary between two clock periods (i.e. half-time 
is odd), there is no message bit to be decoded. There may still be some useful 
information here however; if the current time period is long it means that the 
last transition also occurred at a clock period boundary. This means that there 
was no transition in the middle of the currently ending clock period, and 
signifies a violation of Manchester-coding format. This should be detected as an 
error condition. 

                                         

2 For version 1.0 and 3.0 sensors only -- for version 2.1 sensors, half-time must be divided by 
four to get the message bit number. 
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When a transition falls in the middle of a clock period (half-time is even), a 
message bit can be detected and its value is simply equal to the RF state 
(on=”1” and off=”0”) just prior to the transition. 

The decoding algorithm described above is simple and correctly determines the 
polarity of each bit based on the current RF signal state (on/off). Another 
algorithm has been developed by others which also works but does not consider 
the RF state when detecting bits (except for the first bit). This algorithm is 
described later. 

The half-time value is also useful for verifying that bit-doubling is correct in 
version 2.1 messages. Since a long transition period is required to change from 
a 1 to a 0 bit (or vice-versa), every bit pair in these messages is required to end 
with a long transition period. Furthermore, when time is aligned with the end 
of a double-bit period, half-time taken modulo-4 will be zero. 

When decoding a message from a version 2.1 sensor, and half-time modulo-4 is 
non-zero, no bit is detected. When half-time modulo-4 is zero, a bit is detected 
and a check is made that the current transition period is a long one (otherwise 
an error exists). 

Initializing Half-Time 

As mentioned above, half-time must be initialized correctly for the algorithm 
to work. This translates to two requirements: 

1. Half-time must be initialized to an even value at a transition that occurs 
in the middle of a clock period. 

2. If half-time will be used to track message bit numbers, half time 
modulo-2 (or modulo-4 for version 2.1 sensors) must be set such that it 
represents the correct bit number (possibly with an offset) at an early 
point in the message. The logical place for this initialization is when the 
end of the preamble is detected.  

AcuRite VN1TX Challenges 

Decoding this sensor is simple as long as OS3 protocol messages are not also 
present. When both VN1TX and OS3 messages are present, care must be taken 
in properly delineating the OS3 preamble from the VN1TX preamble.  

Confusion can occur because the transition time interval on the sync pulses are 
in the same range as times for the first long time interval after the OS3 
preamble.  The first RF pulse after preamble is a bit shorter and is followed by 
a short off interval and these two events can be used to identify this sensor's 
signal. 
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Alternate Algorithms 

These algorithms have been published on the internet previously by various 
people. 

As will be shown below, if the value of the first message bit is known then the 
message can be decoded by considering only the time intervals between RF 
state transitions, and ignoring the actual RF state value at each transition. 

In a Manchester coded signal, each source data bit generates either a pair of 
short transition intervals or a single long transition interval. A source bit will 
generate a pair of short transition intervals when it is the same value as the 
preceding source bit. When a source bit has the opposite value as the 
preceding source bit, a single long transition interval is generated. 

This description of Manchester coding lends itself to decoding based solely on 
transition timing. A pair of short transitions represents a bit identical to the 
previous bit. A long transition means the current bit is the opposite of the 
previous bit. This works as long as the value of the first bit can be correctly 
determined – otherwise the resulting decoded bit stream will be inverted. 

Here is another algorithm that will properly decode version 2.1 messages: 
every long period represents no change in bit state while every pair of short 
periods represents the bit state changing. Under this interpretation, the 
preamble decodes as 32 “1” bits instead of a repeating “1010…” pattern. 
Furthermore, each bit in the message appears doubled without inversion – the 
sync nibble would be “00110011” for example. Answering the question of why 
this works is an exercise left for the reader. 

Decoding AcuRite PSM Messages 

These message are conceptually much easier to decode. Each "on" pulse should 
be checked for a proper duration, and the length of the "off" periods is used to 
determine each bit (one or zero).  

The presence of these messages can be identified by the appearance of a 2 
msec long off period. This long of an off period does not occur when noise is 
being decoded and luckily, the AGC circuits in the MC33596 receiver used in 
the WxShield will not ramp the gains back up to noise detection levels in only 2 
msec (although they will in a 4 msec off period). This permits the detection of 
an AcuRite message -- but the determination is often made after the first bit 
has been received and one or more bits may have been lost. 

This problem is easy to solve as there are at least three repetitions of each 
message. After the AcuRite message is suspected, receiver AGC can be gated so 
as to only be enabled when the RF signal is on and in this way, over the length 
of the first message repetition will converge on the proper gain setting. When 
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the first long off period (9 msec) between repetitions is detected, a transition 
to recording message bits is made and the AGC can be periodically turned on 
once or more during each message if desired. 

In practice, this additional decoding logic does not seem to interfere with 
detection and decoding of version 1.0, 2.1 and 3.0 RF signals. 

There may be other wireless sensors that transmit in this format but this is not 
covered here.  

When an AcuRite PSM format message is received, it must be carefully 
examined to determine whether it represents an AcuRite temperature-only 
message or an Oregon Scientific SL-109H temperature/humidity message. The 
presence of additional sensors using this RF protocol will further complicate 
this task. 

One possible approach is to look for the number of bits over which the message 
repeats. AcuRite 00955 messages are 24 bits in length, while SL-109H messages 
are 38 bits long. 

Message Formats 

All OS version 2.1 and 3.0 messages decoded so far appear to have an identical 
format for the sensor data payload, as shown in the table below. Figure 1 
(earlier in this document) depicts the payload format. The message is assumed 
to contain “n” nibbles, numbered from zero to n-1. For convenience, this table 
also shows the checksum and post-amble portions of the message. 

The coding of sensor-specific data varies according to the type of 
measurements being reported by the sensor. Some sensors use the same coding 
as others which report the similar data – but this is not always the case. For 
example, the THGR810 and THGR122NX temperature/humidity sensors use the 
same data coding, but the RGR968 and PCR800 rain gauges do not. 

 

Nibble(s) Contents Details 

0..3 Sensor ID This 16-bit value is unique to each sensor,  
or sometimes a group of sensors. 

4 Channel Some sensors use the coding 1 << (ch – 1),  
where ch is 1, 2 or 3. 

5..6 Rolling Code Value changes randomly every 
time the sensor is reset 

7 Flags 1 Bit value 0x4 is the battery low flag 

8..[n-5] Sensor-specific Data Usually in BCD format 

[n-3]..[n-4] Checksum The 8-bit sum of nibbles 0..[n-5] 

[n-1]..[n-2] Post-amble Unknown contents and purpose 
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Most (but not all) sensor data is in BCD format, least significant digit (LSD) 
first. For example the value of 27.5 degrees Celsius would be coded as the hex 
nibbles “572”. The decimal point is assumed to be in a fixed location and is not 
actually transmitted. 

Version 1.0 Message Format 

At this point, there is only a single known format for version 1.0 messages. All 
version 1.0 sensors are temperature-only units.  

Nibble(s) Contents Details 

0 Rolling Code This 8-bit value changes randomly when the sensor is 
reset or batteries changed. 

1 Channel Channels 1,2,3 are coded as 0,4,8 

5..2 Temperature BCD temperature in degrees Centigrade 

7..6 Checksum Byte-oriented checksum 

 

Version 1.0 messages are 8 nibbles in length. The channel setting occupies only 
two bits in nibble 1 and it is possible that the other two bits may be part of the 
rolling code. They have occasionally been seen to be non-zero. 

The rolling code does not change every time the reset button is pressed. 
Several reset operations are usually required to get this code to change. 

According to internet sources, the first temperature nibble (nibble 5) is 
actually a bit status field containing the following bits: 

• 0 – Not used 

• 1 – A “1” value indicates negative temperature 

• 2 – Unknown (may be a malfunction flag) 

• 3 – Battery low when “1” 

The checksum is computed by organizing the 8 nibbles into four bytes in little 
endian order. Any overflow is summed back into the total sum. 

For example, a message received as (in the order of transmission) “8487101C” 
would contain the following bytes: 0x48, 0x78, 0x01, 0xC1. The first three 
bytes are summed and compared to the checksum (0xC1 in this example). This 
message contains a rolling code of “8” and the sensor is set to channel 2, 
reading 17.8 ºC. 
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For another example take the message “88190AAB”. The bytes 0x88, 0x91 and 
0xA0 sum to a value of 0x1B9. The overflow (0x1) is summed back in giving a 
final checksum of 0xBA. This sensor has a rolling code of “8”, is set to channel 
3, reads -9.1 ºC and has a low battery. 

Notes on the Status nibble 

• There have been reports that one or more bits are reporting a "comfort" 
or similar value. This is unconfirmed by this document's author, but may 
be true. 

• One of the status bits may flip between the two repetitions of version 
2.1 RF messages -- with unknown meaning. Again, unconfirmed. 
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Known Sensor ID Codes 

These are the currently known codes for both version 2.1 and version 3 sensors.  

Sensor Code Sensor Code Sensor Code 

BTHR918 5A5D BTHR968 5D60 PCR800 2914 

PSR01  RGR918 2A1D RGR968 2D10 

RTGR328NA    STR918 3A0D 

THC268  THGN123N 1D20 THGN801 F824 

THGR122NX 1D20 THGR228N 1A2D THGR268  

THGR810 F824 THGR8101 F8B4 THGR918 1A3D 

THN132N EC40 THR238NF EC40 THR268  

THWR288A EA4C THWR288A-JD  THWR800 C844 

UVN800 D874 UVR128 EC70 WGR8002 1994 

WGR8003 1984 WGR918 3A0D THGN500 1D30 

BTHGN129 5D53     

 

Footnotes: 

1. This is the temperature/RH sensor that originally shipped with the 
WMR100 – it was integrated with the anemometer. 

2. The original anemometer which included a temperature/RH sensor. 

3. The newer anemometer with no temperature/RH sensor. 

Nibble values in these codes assume LSB first order. That is, if the bits of a 
nibble in order of transmission are ‘0101’, the hex value is taken to be ‘A’ (not 
‘5’). 

The nibbles are presented in order of transmission. However, since all other 
multi-nibble data in the sensor data message is sent least-significant nibble 
first these values might be considered “backwards”. In other words, the ID 
code “1D20” shown above might be more properly called “02D1”. That said, 
this description describes the code nibbles in order of transmission. 
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Known Sensor Data Formats 

These tables number the message nibbles starting with the sensor ID, so the 
first nibble of sensor data is contained in nibble 8. Message lengths include the 
checksum, but not the two final nibbles (for which the content is unknown). 

 

ID Code(s) Message Length (nibbles) 

1D20, F824, F8B4 17 

Nibbles Contents Temperature/Humidity 

10..8 Temperature LSD is 0.1 degC 

11 Temperature Sign Non-zero for negative values 

13..12 Relative Humidity Percent 

14 Unknown  

 

 

ID Code(s) Message Length (nibbles) 

EC40, C844(?) 14 

Nibbles Contents Temperature Only 

10..8 Temperature LSD is 0.1 degC 

11 Temperature Sign Non-zero for negative values 

 

 

ID Code(s) Message Length (nibbles) 

EC70 14 

Nibbles Contents Ultra-violet 

9..8 UV Index Unit-less Integer 

11..10 Unknown  

 

ID Code(s) Message Length (nibbles) 

D874 15 

Nibbles Contents Ultra-violet 

12..11 UV Index Unit-less Integer 

10..8 Unknown  
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ID Code(s) Message Length (nibbles) 

1984, 1994 19 

Nibbles Contents Anemometer 

8 Direction 
Not BCD – binary value from 0..15. 

Direction in degrees is value * 22.5 degrees. 

9 Unknown  

10 Unknown  

13..11 Current Speed In meters per second, LSD is 0.1m/s 

16..14 Average Speed Same as above 

 

 

ID Code(s) Message Length (nibbles) 

2914 20 

Nibbles Contents Rain Gauge 

11..8 Rain Rate LSD is 0.01 inches per hour 

17..12 Total Rain LSD is 0.001 inch 

 

ID Code(s) Message Length (nibbles) 

2D10 18 (?) 

Nibbles Contents Rain Gauge 

10..8 Rain Rate LSD is 0.1 mm per hour 

15..11 Total Rain LSD is 0.1 mm 

 

 

 

ID Code(s) Message Length (nibbles) 

5D60 21 

Nibbles Contents Temp/RH plus Barometer 

10..8 Temperature LSD is 0.1 degC 

11 Temperature Sign Non-zero for negative values 

13..12 Relative Humidity Percent 

14 Comfort Level 0: normal, 4: comfortable, 8: dry, C: wet 

15 Unknown  

18..16 Pressure Binary (not BCD) in units of 0.01 inHg 
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ID Code(s) Message Length (nibbles) 

5D35 21 

Nibbles Contents Temp/RH plus Barometer 

10..8 Temperature LSD is 0.1 degC 

11 Temperature Sign Non-zero for negative values 

13..12 Relative Humidity Percent 

16..14 Pressure Binary (not BCD) in units of 0.01 inHg 

17..18 Unknown  
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Examples 

Below are some examples of properly decoded transmissions from a 
THGR122NX sensor. Messages are listed as a string of hexadecimal nibble 
values, in the time-order they were received. This sensor represents the 
channel switch setting as the value (1 << (channel-1)), so channels 1,2,3 appear 
as the values 1, 2, 4. 

1D20485C480882835 

This sensor is set to channel 3 (1 << (3-1)) and has a rolling ID code of 0x85. 
The first flag nibble (0xC) contains the battery low flag bit (0x4). The 
temperature is -8.4 ºC since nibbles 11..8 are “8084”. The first “8” indicates a 
negative temperature and the next three (“084”) represent the decimal value 
8.4. Humidity is 28% and the checksum byte is 0x53 and is valid.  

1D2016B1091073A14 

This sensor is set to channel 1 (1 << (1-1)) and has a rolling ID code of 0x6B, 
and the battery low bit is not set in the flag nibble (0x1). Temperature and 
humidity are 19.0 ºC and 37%. Checksum is 0x41 and is valid.  

Detecting Bad Data 

These RF protocols use a simple arithmetic checksum to provide data integrity. 
This does not in fact provide adequate protection against data corruption. 
From time to time, corrupted messages with valid checksums will be received. 
The likelihood of this increases as more wireless sensors are added to a 
weather station. Additional validity checks can often identify these bad apples: 

• For version 2.1 protocol messages, instead of just blindly discarding 
every other bit, verify that each bit pair is either ‘10’ or ‘01’. 

• Verify that the record length is correct for the sensor ID code. 

• If the record represents a new sensor (according to the combination of 
ID code, rolling code and channel), wait until it is received at least twice 
within a 2-3 minute period before assuming it is truly a new sensor. 

• Test all nibbles that should contain BCD digits (i.e. hex values A through 
F are not valid). 

• Validate any other nibbles that have a limited set of valid settings. 

• Perform sanity checks on the decoded numbers. 
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Appendix I 
 

Sample Recordings 

 

Several recordings captured on an oscilloscope are shown here to help in 
visualizing the RF protocols described previously in this document. The 
horizontal time axis has been calibrated in clock periods. This makes it much 
easier to visualize the data being represented by on and off periods of the RF 
signal. The vertical axis is unit-less and simply indicates whether the RF signal 
is on (the higher level) or off (the lower level). Integer values on the horizontal 
axis are aligned with the middle of each clock period – not the boundary 
between clock periods. 

Version 3.0 Protocol Samples 

This first example shows a version 3.0 preamble sequence. Consisting of all “1” 
bits, the Manchester coding requires that the RF signal be “on” immediately 
prior to each clock transition. To achieve this, the RF signal must be turned off 
at the start of the clock period so that it can be turned back on prior to the 
end of the clock period. Remember, that Manchester coding requires there to 
be an RF transition (on-to-off or off-to-on) at the end of each clock period, so 
it is not possible to simply leave the RF signal on during the entire preamble. 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

 

Figure 9. Version 3.0 Preamble 

This also illustrates that for each clock period containing a “1” bit in the 
preamble, there are two short periods – a short RF off period followed by a 
short RF on period. This illustrates that it requires two short intervals to 
transmit a bit of the same value as the previous bit. This is true whether the 
previous bit is a “0” or a “1”. 
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The preamble is 24-bits long, and after the 24th bit a long off period is 
generated. This is the beginning of the sync nibble. 

The next figure shows a zoomed-in view of the sync nibble. At the clock 
transition labeled zero, the RF is off prior to the transition. This indicates a 
zero bit. Each of the next three transitions (1,2,3) show the bit being flipped 
from the previous transition so the 4-bit sync nibble is “0101” in the order of 
transmission. If we take the sync nibble in the opposite order (“1010”) it 
becomes a hexadecimal “A”. 

-3 -2 -1 0 1 2 3 4 5 6 7 8

 

Figure 10. Version 3.0 Sync Nibble 

The sync nibble also demonstrates that in order to send a bit which is the 
opposite of the previous bit, a long off or on period is generated. 

This is good point to review the two algorithms for decoding. In the first case, 
we simply use the state of the RF signal (on/off) prior to the middle of the 
clock period to decode the bit. In figure 4, the horizontal axis grid lines are 
aligned with the middle of each clock period. By inspection, the bit sequence 
here (starting at “-2”) is 1,1,0,1,0,1,1,0,0,0. 

In the second algorithm, we start out with the knowledge that the preamble 
contains all “1” bits. Further knowledge of RF state at transition points is not 
used in this algorithm. When the first long period is detected we have reached 
the end of the preamble. 

Remember that long periods signal a bit which is opposite from the previous bit 
and the preamble contains all “1” bits. Therefore the first long period signals a 
“0” bit. Likewise, the next long period signals a “1” bit since the preceding bit 
was a “0”. 

Preamble bits are present at clock transitions labeled (0,1,2,3) so the 
transition labeled “4” is the first data bit. First, we can clearly see that this bit 
is a “1” since the RF was “on” just prior to the transition at “4”. However, we 
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also know this is a “1” because the last sync bit was a “1” and this was 
followed by two short periods. Remember that short periods signal a bit which 
is identical to the previous bit. 

Now we’ll take a look at a longer segment of a version 3.0 message. The 
transition corresponding to the first sync bit is labeled “0”. Using our time-
based decoding algorithm, we classify the clock intervals starting at “0” as 
either containing one long period “L” (either on or off), or two short periods 
“S” (either on-to-off or off-to-on). By inspection the following sequence 
results. 

-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

 

Figure 11. Version 3.0 Data Segment 

L L L L   S L S S   L L S L   S L S L   L S L L   S S S 
0 1 0 1   1 0 0 0   1 0 0 1   1 0 0 1   0 0 1 0   0 0 0 

   A         1         9         9         4 

Adding the knowledge that the first sync bit is a zero, we can now decode the 
bit stream by inspection – writing down the same bit for “S” and the opposite 
bit for “L”. 

The next step is to group the bits into nibbles and reverse the order of the bits 
in each nibble. This gives us the hexadecimal sequence shown above. The first 
four nibbles (hexadecimal “1994”) are the ID code for the WGR800 
anemometer. 

The next figure shows what happens at the end of a version 3.0 RF message. At 
the clock transition labeled “0”, the RF signal simply goes off, and stays off. 
We will hear no more from this sensor for about another minute. 

After the RF signal has been off for perhaps three or so clock periods, the 
receiver begins to crank up its internal gain. This is controlled by the receiver’s 
automatic gain control (or AGC) circuit. After a few more clock periods 
(between 5 and 6 on the horizontal axis), the gain has been increased so much 
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that low level RF noise is now being mistakenly detected as an RF signal going 
on and off. 

-18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

 

Figure 12. End of a Version 3.0 Message 

Notice that the end of the signal is followed by an off period that lasts a little 
over five clock periods. This is an invalid length for a measured time interval so 
we can use this to identify the end of the message. 

The on and off periods generated by noise will generally not be of a length we 
would consider to be valid “on” or “off” time intervals. As a result there is 
about zero chance we will mistake this noise output for a valid sensor message. 
Once in a while, a small number of time periods (maybe one to three or so) will 
occur that fall within the expected limits but we are looking for many more 
than this in sequence to identify a valid preamble. 

Version 2.1 Protocol Samples 

Here’s what a version 2.1 protocol preamble looks like. Notice that it contains 
32 bits, all of which are long time intervals (on and off). Based on our interval-
based decoding algorithm, we know then that the preamble contains an 
alternating sequence of “1” and “0” bits. 

The last preamble bit (at the “0” clock transition) is a “1” bit since the RF 
signal is on just prior to the transition. The RF pulse that ends at clock 
transition “-32” is not part of the preamble; it just exists to wake up the 
receiver and allow time for the AGC circuit to get adjusted. The first actual 
preamble bit is the “0” that occurs at clock transition “-31”. 

The preamble is then a sequence of 32 alternating bits: “010101...0101”. Now, 
recall that version 2.1 messages actually send each bit twice, with the first of 
the two inverted. Therefore, a sequence of sixteen “1” bits will be sent as 32 
bits and each original “1” bit is sent as a “01” pair of bits. This yields the 
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actual preamble we see here, so in fact the original preamble is of length 16 
and is all “1” bits. 

-35 -34 -33 -32 -31 -30 -29 -28 -27 -26 -25 -24 -23 -22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5

 

Figure 13. Version 2.1 Preamble 

Because of this doubling of bits, we’ll refer to each original bit as a “bit pair”. 
Each pair is either a “10” or a “01” – “00” and “11” are not legal bit pairs. 

Now, take a look at the sync nibble following the preamble. In the next figure, 
the last bit of the last preamble bit pair occurs at clock transition “0”. The 
first bit of the first sync bit pair then occurs at transition “1”. Also, remember 
that the preamble sequence ends with a “01” pair. 

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

 

Figure 14. Version 2.1 Sync and Data 

SL SL SL SL   LL SL LL LL   SL SL 
10 01 10 01   01 10 10 10   01 10 
 0  1  0  1    1  0  0  0    1  0 

          A             1 
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The first bit pair of the sync nibble contains a two short periods followed by a 
long period (“SL”). Since the last preamble bit was “1”, the “SL” sequence 
represents a “10” bit pair. The original sync bit is equal to the last bit in the 
pair and is therefore a “0”. 

Then next bit pair (between 2-3 and 3-4 in the above figure) is a “SL” sequence 
again. Since the last bit of the previous pair was a “0”, this sequence is a “01”, 
corresponding to an original bit value of “1”. 

The short/long periods are grouped into pairs above so the bit pairs are easily 
seen. Since the second bit of each pair is not inverted from the original 
message bit, we extract them to get the original message bits. 

It is fairly obvious now that since the second bit in each pair is opposite of the 
bit preceding it, a long interval (RF on or off) is required to transmit the 
second bit. The net result is that each bit pair is either going to be “SL” or 
“LL”. A bit pair of “SS” or “LS” is illegal since the second bit in this case would 
be identical to the preceding bit. 

Since there are twice as many bits, this example only shows the sync nibble 
and the next six bits. 

The following plot shows one of the possible endings for a version 2.1 RF 
message. However it doesn’t actually end at this point. In addition to 
containing two bits for every original message bit, the entire RF message is 
actually sent twice. 

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

 

Figure 15. Version 2.1 Double Message 

Above, the first copy of the message ends at clock transition “0”. The receiver 
starts detecting noise just after transition “3”. Then, at transition “10” the 
second copy of the message appears. This is an exact copy of the first message 
– preamble, sync, data and all. 
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In the above example there are ten clock periods where the RF is off and 
before the second copy of the message begins. This is typical from sensors such 
as the THGR122NX. However, this is not always the case as is shown in the next 
figure. 

-12-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

 

Figure 16. Version 2.1 Double Message w/o Pause 

In this example (from a UVR128 UV sensor) the first message ends at clock 
transition “-2”. The preamble for the second copy of the message begins 
immediately without any pause at all. The first “01” bit pair of the next 
preamble occurs at transitions -1 and 0. 

For this scenario, the decoding algorithm will simply continue to collect valid 
message bits until the second copy of the message ends and the receiver starts 
decoding noise. Once the bits are decoded, we must look for a sequence of 
sixteen “1” bits in the middle of the message to find the second copy. 
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Version 1.0 Protocol Samples 

The version 1.0 preamble is shown below. The clock rate used to generate the 
x-axis was 342Hz. The integer values on the horizontal axis are aligned with the 
middle of each clock period. 

-1 0 1 2 3 4 5 6 7 8 9 10 11 12  

Figure 17. Version 1.0 RF Preamble 

Since the transmitted bit is equal to the RF state just before the middle of the 
clock period, this preamble consists of 12 “1” bits. These occur starting at zero 
on the labeled plot, and the transition defining the last preamble bit is at 
eleven. 

The next graphic shows the sync portion of the RF message. The middle of the 
first clock period after the preamble is numbered “12” in this graphic. The sync 
interval runs from clock periods 12 through 15 in this case.  

10 11 12 13 14 15 16 17 18  

Figure 18. Version 1.0 Sync Interval 

By the standards used in the rest of the RF message, this sync period is illegal 
because it has no RF transitions in the middle of each clock period. However, if 
we continue to sample the RF state just before the middle of each clock 
period, the sync portion of the message contains five bits – 0,1,1,0,0. 

Clock alignment jumps slightly between the end of the sync period and the first 
data bit. Above, the transition which occurs just prior to the middle of clock 
period 17 is actually the middle of the first data clock period. It is not known 
why this apparent time shift exists. 
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The next figure shows the data portion of the message after the clock has been 
re-synchronized after the sync period. The middle of the clock period 
containing the first data bit is numbered zero. 

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33  

Figure 19. Version 1.0 Data Payload (starting with “0”) 

Recall that the RF pulse is off at the end of the sync period. There are two 
ways the data portion of the message can begin depending on the value of the 
first data bit.  

If that bit is a zero, then the RF will remain off until the middle of the first 
clock period. Since there must be a transition in the middle of the clock 
period, the RF will need to go on at that point. This is the situation seen in 
figure 14. Obviously, that first pulse can either be long or short depending on 
the value of the second bit. In this case, the second bit is also zero so the pulse 
is a short one. 

The next graphic shows the case where the first data bit is a “1”. In this case 
there is a transition prior to the middle of the first clock period. Since a 
transition is required at the middle of the clock period, this pulse must be a 
short one. 

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33  

Figure 20. Version 1.0 Data Payload (starting with "1") 

Referring back to figure 13, it is clear that the length of the off period after 
the long sync pulse can have two different values. The shorter value (shown in 
figure 13) occurs when the first data bit is a “1” and the longer value 
corresponds to a first data bit of “0”. 



 Oregon Scientific RF Protocols 

 Page 39 of 40 

As mentioned above, and for unknown reasons, a clock synchronized with the 
preamble is slightly out of sync with the data portion of the message. The 
measured time from the end of the long sync pulse to the middle of the first 
data clock period is 6.68 milliseconds. 

AGC Problems 

In some receivers, the long RF-off time periods that occur during the sync 
interval of version 1.0 RF messages may cause problems with automatic gain 
control. If the receiver is designed to receive data at kilo-hertz rates, the AGC 
may start ramping up receiver gains during these long RF-off intervals. When 
the RF finally comes back on, the receiver may be over-loaded and the first 
few data bits will be corrupted until the AGC can recover. 

This problem can be solved if the AGC circuits are locked down (frozen) at 
some point during the preamble of a version 1.0 RF message and unlocked after 
the message ends. This is the technique used with the WSDL WxShield to 
receive version 1.0 messages. 
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Appendix II 

CRC Specifics 

 

When the OS post-amble contains an 8-bit CRC checksum, it is a CRC-8-CCITT 
code, which uses the polynomial: 

x8 + x2 + x1 + x0 

The CRC checksum is transmitted as two nibbles, least significant nibble first. 
The bit-stream fed to the CRC algorithm is created by sending each nibble, MSB 
first, in the order of transmission up to, but not including the checksum. Note 
that bits within a nibble are not fed to the CRC algorithm in the order of 
transmission (which is LSB first). For example, a the hexadecimal sensor ID 
"2914" is transmitted as this bit sequence (LSB of each nibble goes out first): 

0100 1001 1000 0010 

However, this portion of the message would fed to the CRC algorithm in this 
order (MSB of each nibble goes out first): 

0010 1001 0001 0100 

Further details appear to be sensor/protocol specific. The simplest case is 
found with version 3.0 sensors. These use an initial shift register value of zero. 

Version 2.1 sensors appear to use different initial register values -- even among 
sensors of the same model. It is not clear if this is actually correct -- it seems a 
little odd to ask the receiver of these messages to figure out the correct initial 
register value. Perhaps there is a simpler explanation for the CRC algorithm 
used in version 2.1 sensors. 

Ambient Weather WH2C sensors also generate an 8-bit CRC using the 
Dallas/Maxim polynomial: 

x8 + x5 + x4 + x0 

 


