
WSDL WxShield

Warnings and Cautions

!!! VERY IMPORTANT !!!

Read carefully before unpacking the WxShield

By following the cautions and warnings below, your WxShield will enjoy a long,
accurate and productive life!

Static Discharge Warning
This is a prototype item, not a finished product and as such is not fully
protected against damage caused by static discharge. Please read and follow
these directions to avoid static damage to your WxShield.

We recommend that you avoid physically handling the WxShield any more than
necessary. The Arduino/WxShield package should be handled by the edges;
avoid touching any of the circuitry on top of the WxShield. Before picking up
the WxShield, it is a good idea to first make contact with the metallic housing
of the antenna or USB connectors. This will safely drain the static charge you
are always carrying. If the unit’s USB port is plugged into a computer, touch
the metal case of the computer (if it has one) before touching the WxShield;
otherwise just touch the RF or USB connectors first.

 Handle WxShield by the Edges Don’t Touch the top of the WxShield

Make first contact with metal body of either RF or USB connectors

When USB is connected, touch computer metal case first

The antenna connection IS protected against static damage. You do not need to
worry about accidental static discharges directly to the antenna, but
intentionally zapping the antenna with static is still not a good idea.

OK to touch antenna, but please avoid when possible

“No WxShields were harmed or mistreated in any
way during the taking of these photographs”

Most folks are aware of static discharge on dry days when they get “zapped”
touching a door knob or other metallic object. The human body often carries
static charges much smaller than this which cannot be felt but are still capable
of damaging the WxShield’s sensitive electronic circuitry.

The symptoms resulting from static damage can range anywhere from subtle to
catastrophic. For example, discharging small amounts of static into some of the
more sensitive parts of the receiver circuitry (by touching the top of the
WxShield) might cause only a slight degradation of receiver sensitivity. Each
small discharge could make this a bit worse until the receiver eventually has
trouble receiving strong, nearby sensors. Static damage is cumulative.

At the other extreme, a very strong static discharge to an unprotected part of
the circuitry may completely disable the receiver, barometer or
temperature/humidity sensor in one fail swoop.

Watch Your Eyes!
The four antenna wires are kind of sharp on the ends and the way the antenna
is mounted next to the LED viewing window, someone might poke themselves in
the eye while trying to look at the LEDs. In the interest of safety, some foam
ear plugs have been glued onto the ends of the wires for protection.

There's a photo of this below. Yeah, they look goofy but if you remove them,
please don't poke yourself in the eye with the wire and please don't blame us if
you do – you were warned!

Goofy-looking eye protection!

The Barometer is Light Sensitive
The BMP085 barometer has a visible hole in the top for sensing pressure. The
barometer reading can be corrupted by light entering through this small hole so
it is a good idea to keep the WxShield away from strong light sources.

The above photograph shows the barometer circled in blue. The small pressure
sensing hole is visible in the middle of the barometer’s metal lid.

Mounting Box Suggested
We recommend that you house the WxShield in a covered box to reduce the
possibility of static damage and to keep stray light out of the barometer
pressure port.

The cardboard shipping box can be used for this purpose and there are
markings for holes on the inside of the box for this purpose. You can connect
the antenna, USB and telephone cables through these holes. This will reduce
the likelihood of static damage and provide a dark environment for the
barometer.

One example of a custom mounting box is shown above.

Some WxShield units are now provided with an inexpensive custom aluminum
enclosure, the “WxBox” pictured below. More information is presented on this
enclosure later in this document.

The “telephone” jacks are NOT telephone connections!
We have used standard “RJ14” telephone jacks as an inexpensive method to
connect the remote SHT15 sensor board to the main unit. If you plug either one
of these units into a standard telephone outlet it will probably destroy the
unit.

Do not plug the either the WxShield or remote board into a standard
telephone outlet! This will void your warranty and you will be responsible for
any damage caused.

Acceptable Telephone Cords
The WxShield comes with a properly wired telephone cord roughly 36-inches in
length. You can replace this with your own cord as long as 50 feet if desired.
There are three requirements you must meet in doing so, however.

1. The telephone cord should have four conductors (RJ14). A six-conductor
cord (RJ25) will work too, although only four of the six conductors will
be used. Connecting a two conductor cord (RJ11) may damage the
remote board and/or WxShield.

2. A cord wired for “voice” – NOT a “patch” cord must be used. Using a
“patch” cord may destroy the SHT15 on the remote board.

3. The cord should be of the flat variety where the conductors maintain a
constant relationship to each other throughout the length of the cord.
Round cords where the wires are all wrapped into pairs may or may not
work, especially with longer cords.

Below is a picture of the two ends of a cord wired for voice. Look at the order
of colors from left to right on each plug, visible through the plastic body:

Left plug: Black, Red, Green, Yellow
Right plug: Yellow, Green, Red, Black

The wires are installed in reverse order on one of the plugs. This is called
“voice” wiring. If the wires were in the same order on both plugs, this would
be a “patch” cord instead. The majority of telephone cords sold in the stores
are wired for voice, but you should confirm this before using one. You can do
this visually if colored wires are visible as above, or with an ohm-meter or
continuity tester otherwise. If you’re not sure, we recommend you stick with
the included 36-inch cord.

In this photograph there are six metal contacts on the left-side connector but
only the central four are actually being used. This is okay and acceptable if you
are making up your own cables. Just be sure that you get the four wires
connected to the middle four pins.

Do NOT Connect/Remove Remote Board while Power is ON
The telephone cord must not be inserted or removed while power is applied to
the WxShield (through the USB cable and/or DC power jack on the UNO board).
Doing so may damage or destroy the SHT15 sensor on your remote board. Doing
this may also damage or destroy interface circuitry on the WxShield main
board.

WSDL Weather Shield User Manual
Version 2.3

January, 2013

Unpacking and Setup

The WxShield may be delivered in a small shipping box as pictured below.

The box contains the WxShield, SHT15 remote sensor, SF1 filter cap, 3-foot
RJ14 cord and custom modified antenna.

The dark antistatic bag contains the WxShield/Arduino board set, the remote
SHT15 board and the SF1 filter cap for the SHT15 sensor. Do not remove the
contents from this bag just yet.

You will also notice several markings on the inside of the box to aid in making
cutouts. This allows the WxShield to be mounted in the shipping box.

The antenna has been folded up to fit inside the shipping box.

As shown below, the antenna wires have some goofy-looking foam ear plugs
glued onto the ends. At the last minute it was realized that the ends of the
wires are kind of sharp and someone might poke themselves in the eye
accidentally. In the interest of product safety, these were added as a safety
measure.

The next step is to carefully unfold the antenna’s wires as shown in the two
photos below. Some shipping boxes may not have the antenna wires folded up
as much as this and there will be less unfolding to do.

If you do not plan to mount the WxShield in the shipping box, this next part can
be skipped.

Start by un-folding the shipping box and placing it on a flat surface such as a
desktop as shown below.

Place some newspaper or a magazine under the box to protect the desktop. Cut
out three square and two round holes. It may be easier to use a drill to make
the round holes. The hole diameters should be approximately 0.250 (1/4) and
0.375 (3/8) inches. Here’s the box after cutting out the holes:

Carefully remove the WxShield, remote SHT15 board and SF1 filter cap from
the antistatic bag. The white SF1 filter cap is very small so be careful not to
lose track of it. The photo below shows these items removed from the bag. The

remote board and filter cap can be stored in the original anti-static bag until
needed later.

Remember, these items are static sensitive so handle them as little as possible
and hold them by the edges to avoid touching circuitry on the top of the
WxShield and remote boards.

Now, fold the cardboard back up into a box. Insert the WxShield’s antenna
connector through the smaller hole in the side of the box. It may be necessary
to tip the WxShield up a bit as shown below.

After pushing the connector through the hole, the board can be laid flat in the
bottom of the box.

Holding the WxShield by the edges in one hand, plug in the USB cable and
telephone cord through the square holes in the rear panel of the box.

The box can now be closed; be sure to tuck the flaps in as shown. Holding USB
connector if necessary, thread the antenna onto the round connector
protruding from the other side of the box. It may be necessary to enlarge the
hole in the box’s front flap if it does not line up exactly.

The square hole cut into the lid of the box gives a view of the red and green
LED lights on the WxShield. It is a good idea to cover this hole with a piece of
clear tape to keep dirt and debris out of the box.

The barometer has a hole in the middle of its top through which atmospheric
pressure is sensed. The barometer is sensitive to light entering through this
hole and strong light may cause inaccurate readings or a malfunction of the
barometer. The hole in the lid does not let enough light into the box to cause
large errors, although it is a good idea to keep the opening away from direct
sunlight while the WxShield is powered up.

The LEDs on the WxShield do not emit enough light to cause significant errors
in the barometer reading.

Here is the WxShield installed in the shipping container with a piece of clear
tape covering the observation hole in the lid. The red and green LEDs are both
lit in this photo, and visible through the hole.

Installing the Antenna Remotely
It is also possible to insert a piece of coaxial cable between the WxShield and
the antenna. This allows the antenna to be located for better reception or for
aesthetic purposes (out of sight). It is best to use 50-ohm cable, not the 75-
ohm variety that is often used for television signals.

The WxShield uses “SMA” connectors on the antenna. Until recently, there was
only one kind of SMA connector. With the advent of wireless internet routers
however, a new kind of SMA connector has been created – the “Reverse
Polarity” or “RP” SMA connector.

The WxShield uses normal polarity SMA connectors so be careful not to
purchase the RP variety as they will not work. Below are two photos showing
the ends of two coaxial extension cables. The one on the left is normal polarity
(CORRECT) and the one on the right is reverse polarity (WRONG).

Normal Polarity Reverse Polarity

The normal SMA connector features a protruding center pin on the end with the
nut. In reverse connectors, the center pin is on the end with the male threads.

There is one other thing to consider in selecting an extension cable. All coaxial
cable has loss – adding a cable between the antenna and WxShield will always
result in some loss of signal. Just how much loss depends on the type of coaxial
cable used and its length.

Each type of coaxial cable has a different amount of loss per unit length. This
is usually specified in units of decibels (or “dB”) per 100 feet (or meters) of
length. For example, the extension cables shown above are made with “RG174”
coaxial cable. An internet search for “RG174 loss db” reveals that this cable
has a loss of 60dB per 100 meters. A 10-meter length of this cable would have a
loss equal to one tenth of the loss for 100 meters, or 6dB.

The “RG58” variety of cable has a loss of roughly 28dB per 100 meters, so a 10-
meter extension cable made from RG58 would have a loss of about 2.8dB.

Loss also depends on the frequency of the RF signals (434MHz in our case).
Cable loss tables will show the loss at several different frequencies; pick the
entry closest to 434MHz. There will usually be entries for 400, 450 or 500MHz
and any of these values is close enough. This data is sometimes also shown as
an X-Y graph so you can read the loss at 434MHz directly from the graph.

So then, how much loss is too much? Its difficult to give an exact answer, but
here are some rough guidelines to help in selecting an extension cable.

• Anything less than 3dB of loss will probably not be noticeable.

• Loss up to 6dB is probably fine, although you may notice some reduction
in signal strength depending on the antenna's new location. On the other
hand, relocating the antenna may increase signal strength by more than
6dB so there is often a net gain.

• Loss values above 10dB will be noticeable in many cases and exceeding
20dB of loss will often result in loss of signals. With this much loss, a
low-noise preamplifier might need to be installed at the far end of the
coax (at the antenna); unfortunately that task is beyond the scope of
this manual.

Remember – these are just guidelines and your results will vary.

Here is a quick overview of three types of coaxial cable commonly available.
There are many, many other types which will also work if the loss is
acceptable.

The coaxial cable you choose may or may not be readily available with SMA
connectors on each end. As a result, it may be necessary to purchase adapters
to connect these cables to the WxShield's SMA fittings.

• RG174 (60dB/100m) can usually be purchased with a pair of
male/female SMA connectors. RG174 cables setup like this between 10
and 30 feet in length are available on E-bay for as little as $15US. RG174
cables longer than about 20-30 feet may have too much loss.

• RG58 (28dB/100m) may not be available with SMA connectors. The least
expensive viable alternative is probably to get male BNC connectors on
each end. This will require two adapters (photo below); one female BNC
to male SMA, and one female BNC to female SMA. 50-foot lengths are
often available on E-bay for less than $15US and the two adapters can
usually be found for less than $10US. Runs of RG58 longer than about 75-
100 feet may have too much loss.

• For those really long runs, RG8 (9dB/100m) may be required and either
BNC, TNC or Type-N male connectors are often used here. It is best to

avoid PL259 connectors – they are not designed to work at these
frequencies. Long lengths of cable like this are often custom ordered cut
to length with your choice of connector. This can start to get a bit
pricey. Again, appropriate adapters are required for connecting the
antenna and WxShield at each end.

There are two photos below showing the adapters that would be required to
use a cable that came supplied with male BNC connectors on each end (only
one adapter of each type is required).

BNC Female to SMA Female BNC Female to SMA Male

One last note: even within each cable type there can be variation in the
amount of loss due to different materials and manufacturing techniques, so
check the manufacturers data sheet for that exact cable if available (this is not
always possible). For example, different grades of RG8 cable have loss that
varies between 9dB and 21dB per 100-meters.

Setting up the Remote Board
In the previous setup steps, the telephone extension cord was plugged into the
WxShield. Now plug the other end of this cord into the remote SHT15 sensor
board. If desired, you can postpone installing the SF1 filter cap over the SHT15
sensor until proper operation is verified. In fact the SF1 does not technically
need to be installed at all but it is a really good way to protect your $30US
SHT15 sensor from dust and dirt.

The SHT15 board is very small and lightweight. If necessary, put a piece of tape
near the end of the phone cord to keep the remote board from flopping around
while initially powering up the WxShield.

Use the included 36-inch telephone cord when first powering up the WxShield.
If you later wish to use a longer replacement cord, be sure it is wired for
“voice” as explained in the Cautions & Warnings section at the beginning of
this document. Failing to do so may result in permanent damage to the SHT15
remote board and/or WxShield.

Installing the SF1 Filter Cap
Installing the filter cap is highly recommended to protect the SHT15 sensor
from environmental contamination (dust, dirt, etc.). It will slightly increase the
response time to changes in temperature or humidity but for the majority of
users this is not an issue.

You can download a datasheet for the filter cap at the URL below which
includes more information on the installation process.

www.sensirion.com/en/pdf/product_information/Data_sheet_filter_cap_SF1_E.pdf

The cap can be inserted into the PCB mounting holes two ways. The photo
below shows the correct orientation.

There is a rectangular slot in the top of the sensor (on the left) and a matching
slot in the underside of the filter cap. Both slots are circled in blue. The filter
cap should be aligned as shown above and then flipped over (left-for-right) and
placed over the sensor.

The next photo shows the filter cap properly inserted into the holes in the
remote PCB. The next step is to secure the filter cap in place. There are a
couple ways to accomplish this as described in the SF1 data sheet.

Unless the remote board will be subjected to relatively harsh environmental
conditions, it should be adequate to melt the pins under the PCB to secure the
filter cap. Included below is a drawing from the SF1 data sheet which depicts
the melted pins.

Unlike the drawing, there will be no “o-ring” or “housing” structure. This
drawing simply illustrates how the pins may be melted to secure the filter cap.
We have not actually tried doing this before and so cannot offer much
guidance.

Sensirion suggests using a hot iron at least 160ºC for this purpose. A soldering
iron tip may be too hot and could result in burning the plastic so something a
little cooler is probably needed.

Powering Up the WxShield
After optionally installing the shield in the shipping box or other housing, you
are ready to power it on for the first time. You will need a copy of the driver
configuration file named “Arduino UNO.inf” on the PC. There are no other
driver files required and this should work for Windows XP, Vista and 7.

You can download this file from the WSDL website at this URL:

http://wmrx00.sourceforge.net/Arduino/ArduinoUNO.inf

Go ahead and plug in the USB cable now. When you first apply power, the red
and green LEDs on the shield will flash for about one second. This lets you
know that the Arduino “sketch” (a.k.a. software) is running.

Installing the Windows Driver
One of three things will happen when you first connect the WxShield’s USB
cable to your computer:

1. If you have previously installed drivers for Arduino UNO, a new COM port
number will be assigned to the WxShield and you are ready to go.

2. You will be presented with the “New Hardware Found” dialog.

3. Windows will seemingly fail to install the drivers and present you with
various error messages. This is more likely to happen with Windows Vista
and Windows 7.

Below, we walk you through the process for case 2 above.

If you get errors at first instead (case 3) then first open the Device Manager.
Locate the Arduino UNO device (it may be hiding under the “Ports (COM &
LPT)” sub-category). Right-click on the UNO and select “Update Driver…” and
proceed with the following steps.

In the first dialog, tell Windows not to look on the internet and click “Next”.

http://wmrx00.sourceforge.net/Arduino/ArduinoUNO.inf

Select the option to install from a specific location and click “Next”.

Uncheck the option to search removable media and check the option to include
a specific location in the search. Then, click the “Browse” button.

For this example, the “Arduino UNO.inf” file has been placed in the directory
“C:\Some Folder”. In the file browser that appears now, navigate to the folder
that contains the “Arduino UNO.inf” file. You will not actually see this file
displayed but you still need to navigate to that containing folder. Then click
the “OK” button.

At this point, you will see the folder you selected displayed in the text box
next to the “Browse” button. Make sure this is the correct folder and then click
“Next”.

If you have selected the correct folder, Windows will begin the driver
installation process now.

The next thing you will see is this lovely little dialog, warning that you are
about to destroy your computer! Not to worry – this is just Microsoft trying to
shake down hardware vendors for some protection money. You can safely
ignore this warning. Click the “Continue Anyway” button and life will be good.

The installation should then finish, presenting you with the final dialog
window.

The last thing you need to do is to open the device manager and locate the
UNO device as shown here. Make a note of the COM port number (COM18 in this
case). As shown below, the UNO will show up in the device manager’s category
of “Ports (COM & LPT)” – click on the plus sign next to the category to expand
it.

You will need this number when setting WSDL options for your Arduino
hardware.

Windows 7 Driver Installation
The dialogs for Windows 7 are a little different for driver installation. Below is
a terse guide through this process. Start by selecting the “System” item in your
Control Panel. Then click on “Device Manager” (as highlighted below).

Locate the “Arduino UNO” entry as shown below. Right click on it and select
“Update Driver Software”.

In the next dialog window, click on “Browse my computer…”

In the next window, un-check the “Include subfolders” option and then click on
the “Browse…” button.

In the next window, browse to find the folder containing the “Arduino UNO.inf”
file. In this example, the file is contained in the folder “Some Folder” on the C:
drive.

After clicking “Next” this window will appear. Again it is only a feint by
Microsoft, so click on “Install this driver software anyway”.

If all goes well you should be presented with the successful installation window
as pictured here.

Close this window and look in the Device Manager again. Your Arduino UNO
should now appear with a COM port number as shown here (COM5 in this
example).

Configuring WSDL
Start WSDL, open the option window and click on the “Hdwr” tab. Select the
Arduino option button, which will activate several options for your new
hardware. These new options are in the outlined box in the lower right corner
of the window labeled “Arduino Weather Console”.

Select the Arduino COM port from the drop-down list. If the COM port you
identified in the list is not available, you can also type in the value (such as
“COM18” or “COM27” for example).

There are four check boxes that also need to be configured here. The first one
will use the temperature reading from the Bosch BMP085 barometer if you do
not have the optional Sensirion SHT15 remote temperature/humidity sensor. Be
aware that the BMP085 temperature can read quite a bit higher than the actual
room temperature due to heat generated by the WxShield. This is especially
true if the WxShield is installed in a closed box (as recommended).

The other three settings depend on the array of wireless sensors you will be
using. Determine which of the following scenarios describes your suite of
sensors.

1. Standard network:

a. All sensors transmit the same Oregon Scientific RF protocol (either
2.1 or 3.0, but not both), AND

b. The channel switch settings on all of your wireless temperature
sensors are all different (no overlapping settings), AND

c. You have no more than one UV sensor.

2. Custom network:

a. You have a mix of different RF protocols (2.1 AND 3.0), OR

b. Channel switches on two or more of your wireless temperature
sensors are set to the same number, OR

c. You have two or more UV sensors.

Standard Sensor Networks
In this case the options to auto-configure new sensors and detect battery
changes should be checked. Do not check the option to use any available
channel. The option window screen capture above shows this setup.

This type of network is easy to manage and you won’t need to learn a lot about
wireless sensor management. You can change as many batteries at the same
time as you want. That is, unless you start picking up a neighbor’s wireless
sensors; this problem is discussed below.

Custom Sensor Networks
The options to auto-configure new sensors and use any available channel should
be checked and the option to detect battery changes should be un-checked.
This is a more complex scenario which is described in more detail later.

After all of your sensors have been configured, the option to use any available
channel can be turned off and detection of battery changes turned on.

After making the desired settings, clicking the button to “Save” options will
cause WSDL to restart. You should see the following dialog warning at this
point. Click OK and WSDL should exit and automatically restart.

When WSDL restarts open the message panel (click on View…Message Panel in
the main WSDL window) and you should see messages similar to the following.

In the main WSDL window, select “View…Enable…Undecoded Messages”; make
sure that option is checked. Go back to the message panel and let this run for a
while. You should see additional messages appear. Look for at least one each of
the following message types.

• OS2:/OS3: These are received and partially decoded messages from Oregon
Scientific wireless sensors. The difference between OS2 and OS3 is the RF
protocol version of your sensor. For now, just confirm receipt of at least
one of these message types.

• SHT: This is data from the SHT15 remote sensor board. If you’re not getting
that and just realized you forgot to plug in the remote board – wait! Be sure
to power down the WxShield before plugging in the remote board.

• BMX: This is temperature/pressure data from the Bosch BMP085 barometer.
These messages only appear about once a minute so be patient.

If you are receiving all three types of messages, then all three sub-systems on
the WxShield are operational.

What comes next depends on your sensor array.

Sensor Identification
Channel switches on your wireless sensors allow no more than ten different
settings. In reality sensors can effectively have anywhere from 256 to 2,560
“virtual” channels. To understand how this is possible, a discussion of the data
transmitted by sensors will help.

The drawing below depicts the information contained in every transmission
from version 2.1 and 3.0 wireless sensors. Version 1.0 sensors do not include
the “ID” field in the header.

Header
(ID, Ch, RC)

Sensor Data
Temperature, Humidity,

Rain, Wind, etc...
Checksum

All transmissions begin with a “header” which contains identifying information
about the sensor. This is followed by the current weather data measured by the
sensor. Finally a “checksum” is transmitted which provides a check on the
integrity of the entire message. The checksum helps to identify garbled
messages so they can be discarded.

For the purposes of this discussion, we are only concerned with the data
contained in the header portion of the message. There are three different
numbers contained in the header:

• An “ID” number which identifies the sensor’s model. This is an integer value
between 0 and 65,535. In some cases this value is unique to a particular
sensor model. For example the PCR800 rain gauge is identified by the value
10,516. In other cases, several different sensor models may share the same
identification number (e.g. the THGN123N and THGR122NX both share the
number 7,456). WSDL’s Arduino Sensor Manager displays these numbers in
hexadecimal format, so the value “7,456” will be shown as the hexadecimal
value “1D20”.

• A “Ch” value that depends on the channel switch setting. With some sensors
this number is the same as the channel switch setting. For example when
the channel is set to “7”, the number “7” is also transmitted. For other
sensors, this number may be different than the channel number selected on
the channel switch. For example, channel switch setting “1” may be sent as
“1”, while selecting channel “3” causes the number “4” to be sent.

• A special “RC” number which stands for “Rolling Code”. This is an integer
value between 0 and 255. This number allows WSDL to create far more
“virtual” channels than the actual number of channel switch settings. The
next section explains how this works. WSDL displays rolling codes in
hexadecimal format. For example, the decimal value “128” will be shown as
hexadecimal “80”. In version 1.0 sensors, the rolling code is a number
between 0 and 16.

Rolling Codes
When batteries are first installed in a sensor, the sensor will set its rolling code
to a random integer between 0 and 255. If batteries are changed, the sensor
will once again pick a (usually different) random value for the rolling code.
Every time the sensor’s reset button is activated, the random code will change
to another (usually different) random value.

There is a 1-in-256 chance that after a battery change your sensor will choose
the same rolling code again, so this will not happen very often. But it will
happen on occasion, and you need to remember this.

The rolling code was probably added to allow two neighbors to operate OS
weather stations without interfering with each other. As long as their individual
consoles (such as the WMR100) keep track of the rolling code for their own
sensors, the neighbors’ sensors will not get mixed up.

As mentioned above, there is a 1-in-256 chance that two neighbors’ sensors will
wind up with the same identical rolling code. When this happens, there is no
way to tell them apart and one neighbor will need to reset their sensor for a
new rolling code.

These rolling codes are the mechanism that allows WSDL and the WxShield to
work with multiple sensors set to the same channel number. An example will
help to understand how this works.

Consider two THGR122NX sensors that are both set to channel “1”. The header
from one sensor will contain the sensor’s ID (hexadecimal “1D20”), the channel
number (“1”) and a random rolling code (e.g. “3F”). We’ll represent this
sensor’s header data with the notation “1D20,1,3F”.

The header from the second THGR122NX sensor will contain the same ID and Ch
values, but the rolling code will typically be different – something like this:
“1D20,1,B3”.

WSDL is then receiving transmissions from a sensor with the header
“1D20,1,3F” and another sensor with the header “1D20,1,B3”. Clearly there is
no problem telling these two sensors apart.

Since there are 256 different possible rolling codes it is theoretically possible
to have 256 different THGR122NX sensors all set to channel 1 and we can still
tell them apart. This turns out not to be practical for several reasons, but
having three of these sensors on the same channel setting is not a problem.

What makes this a bit more difficult is the fact that sensors do not display their
rolling codes in the little LCD window.

During the initial configuration of WSDL, you must determine which rolling code
goes with which sensor for those sensors that share channel numbers. After this
initial setup if you are careful to only change batteries (or reset) one sensor at
a time, WSDL can keep track of things without further assistance.

The easiest way to figure out the rolling codes is to remove the batteries from
all sensors which have channel number conflicts. Then install batteries in one
sensor at a time and watch for WSDL to pick up the new sensor.

Sensor Management
It should be clear now that in order to keep track of wireless sensors, WSDL
needs to associate the header data (ID, Ch, RC) for each sensor with a WSDL
channel number (even with all these virtual channels, there are still only ten
WSDL temperature/humidity channels).

This is done by creating two tables. The first table assigns a “serial number” to
each sensor’s header information (ID, Ch, RC). The figure below shows how the
table works.

Wireless Sensor
ID Code
Channel

Rolling Code

Serial
Number

Table

Sensor
Serial

Number

Figure 1. Sensor Management: Serial Numbers

A second table is used to connect a particular physical sensor (identified by
serial number) to a WSDL channel. This table is called the Sensor Information
Table.

Sensor
Info

Table

Sensor
Serial

Number

Sensor Information
Model Number

Battery Change Date
WSDL Channel Assignment

WSDL Channel Name
Comments

Figure 2. Sensor Mangement: Sensor Information

In addition to assigning a WSDL channel number to the sensor, this table keeps
track of the sensor’s model number, battery change date, channel name and
has room for miscellaneous user comments.

The Arduino Sensor Manager
Both of the tables discussed above can be viewed and edited with the Arduino
Sensor Manager (click Tools…Arduino Sensor Manager in the main WSDL
window).

Users with standard sensor networks will typically not need to use this tool.

The RF Codes Table
When WSDL receives a wireless transmission, it searches this table for the
sensor’s header information. If the sensor’s header is not in the table it will be
added automatically. The serial number will either be set to “-1” (disabled) or
a valid serial number depending on the auto-config option settings.

Users cannot add entries to this table, but can delete entries and change serial
numbers.

In reality, WSDL needs to receive two transmissions from a new sensor within a
short period of time before it is added to the RF Codes Table. This prevents
garbled messages from masquerading as new sensors.

The Sensor Information Table
Two conditions must be met before a sensor’s data will be accepted by WSDL:

1. The sensor’s header must be found in the RF Codes table and the serial
number must be positive.

2. There must be an entry in the sensor information table with a matching
serial number.

The matching entry in the sensor information table is then used to determine
the WSDL channel number for display and logging of sensor data.

Channel Numbers
You may be used to thinking of channel numbers for wireless temperature
sensors, but other sensors (like a UV sensor for example) also transmit channel
numbers. These cannot be changed but they are still part of the sensor’s
header data.

The sensor information table also contains WSDL channel number assignments
for sensors like rain gauges. Normally, these should be set to channel “1” for
sensors other than temperature and/or humidity. The only exception is with UV
sensors – if you are using two or more UV sensors, each sensor should have a
different WSDL channel number.

Automatic Sensor Configuration
You should have enough background now to understand how sensor
configuration is performed by WSDL. First, consider a standard network where
auto-configuration is enabled. WSDL will start with an empty sensor database.

Assume there is only one sensor (e.g. the anemometer). The first time WSDL
hears the anemometer it makes a note but does not do any configuration. The
second time however, the anemometer’s header is added to the RF Codes
table. Since auto-config is enabled, it will do two additional tasks.

1. Assign the lowest available serial number to the anemometer in the RF
Codes table.

2. Add an entry to the Sensor Information table with the same serial
number. The WSDL channel number will be set to “1” since this is an
anemometer.

If a different anemometer is discovered, it will be added to the RF Codes table
with a serial number of “-1” and the Sensor Information table is not modified.
This is because WSDL can only handle data from a single anemometer.

Now, say two transmissions are received from a wireless temperature/humidity
sensor with the channel switch set to “3”.

1. The sensor is added to the RF Codes table using the lowest available
serial number.

2. An entry is added to the Sensor Information table for the new serial
number and the WSDL channel number is set to “3” – the same channel
number that is set on the sensor’s channel switch.

There is one caveat here however. Some sensors (e.g. THGR122NX) transmit a
channel number in the header that is different than the number on the channel
switch. Channel numbers {1,2,3} might transmit as {1,2,4} for example. As a

result, the WSDL channel number assigned during auto-config may be different
than expected.

Any additional temperature sensors are added in a similar manner. Since this is
a standard network, there will be no conflicting sensor channel numbers.

Auto-Configuration in a Custom Network
Custom networks provide a great deal of flexibility in use of sensors with
differing RF protocols and conflicting channel settings. The price to be paid for
this is added complexity in configuring your sensors. It is necessary to
understand more about your sensors’ RF transmissions.

What happens in the previous example if two temperature sensors have the
same channel number? When the second sensor is discovered, WSDL detects the
channel number conflict. As a result, the second sensor will be assigned a serial
number of “-1”.

That is, unless the hardware option to “Use Any Available Channel” is turned
on. In this case, WSDL will assign the lowest unused WSDL channel number to
the new sensor and add an appropriate entry to the Sensor Information table.

This makes it easier to get an initial configuration setup for a custom sensor
network, the actual channel assignments are not predictable and the user must
still determine which sensors have been assigned to which channel.

This initial setup of a custom network is the most difficult part. This task is
easier if you pull the batteries from all of your temperature sensors before
beginning the configuration task. Then, install batteries in on sensor at a time
and wait for that sensor to be auto-configured. This way there is no doubt as to
which sensor is which.

Changing Batteries
When you change sensor batteries, the sensor’s RC usually changes (there is a
1-in-256 chance that it won’t change). When this happens, WSDL will think this
is a new sensor (not the old sensor with new batteries). The new sensor’s
header will be added to the RF Codes table and it will be auto-configured (if
possible) based on option settings. This is probably not what you want.

That’s why there’s an option to detect battery change events in the options
window. Here’s how a battery change is handled if the auto-config and battery
change options are enabled and the use any channel option is disabled.

1. A new sensor is discovered (requires 2 transmissions).

2. WSDL checks to see if there are any other sensors with the same ID and
Ch values but a different RC. For each such (possibly old) sensor,

3. WSDL looks at the last time a message from the (possibly old) sensor
was received, and the first time the new sensor was heard from.

4. If the (possibly old) sensor has not been heard since the new sensor
appeared, it is assumed that the new sensor is the same as the old
sensor after a battery change.

When a battery change is detected, the old sensor’s serial number is changed
to “-1” in the RF Codes table and the new sensor is given the old sensor’s
original serial number. The battery change date for that sensor in the Sensor
Information table is also updated.

WSDL only performs these checks every couple of minutes, and it can take up
to 8 minutes or so for a battery change to be fully processed. If you change
batteries in more than one sensor at a time, and those sensors have
overlapping channel settings then WSDL may get confused. This can result in
sensors getting swapped to different WSDL channels.

As a result, it is recommended you only change one set of batteries at a time
and wait for WSDL to process the change before changing more batteries. You
can see the change happen by watching the RF Codes table for changes in the
Arduino Sensor Manager. Be sure to hit the refresh button once in a while as
this window does not update automatically.

RF Transmission Intervals
Each sensor transmits data about once a minute. It is easy to realize that if all
sensors transmitted data at the same interval (say 60 seconds for example),
you could wind up with a situation where all sensors were talking at the same
time and at best only one sensor (the loudest one) could be received.

OS solves this problem by changing the transmission interval as a function of
the channel number setting. For example, a sensor set to channel 1 might
transmit every 49 seconds while another sensor on channel 2 might send data
every 57 seconds. This way, even if sensor transmissions collide with each
other, this only happens once in a great while.

The above discussion should make it obvious that problems can occur when two
sensors are set to the same channel number. Although WSDL can tell the
sensors apart by examining their rolling codes, these sensors are sending data
at the same intervals.

How much of a problem this is depends on how accurately each sensor defines
its transmission interval. Each sensor has an internal clock which is used to
generate the transmission interval (of say 57 seconds for example). These
internal clocks are not perfectly accurate however, so one sensors might
transmit data every 56.994 seconds while a different sensor is sending data

every 57.007 seconds. Furthermore, these internal clocks tend to drift as the
temperature changes so on a colder day, the sensors might be sending data
every 56.998 and 57.015 seconds respectively.

Transmissions from version 3.0 sensors last about 0.1 seconds and version 2.1
sensor transmissions last about 0.4 seconds.

As a result of these sensor timing issues, two sensors with the same channel
number can wind up talking on top of each other more frequently than when
using different channel numbers. This can manifest itself as a period of time
(lasting as long as several minutes) where either one or both sensors go
missing, even though both appear to have good signal strength. It is even
possible (although unlikely) that this time period could last half an hour or
more.

If you notice that one or two sensors appear to drop out every now and then
and they are both set to the same channel number, this may be the
explanation.

Version 1.0 Sensor Differences
As noted earlier, version 1.0 sensors do not include an ID field in the message
header. As far as is known, all version 1.0 sensors are temperature-only units
and all these messages contain the same data in the same format.

There is only a single nibble (4-bits) in the rolling code for these sensors so
there are only 16 possible values instead of 256. Furthermore, at least some of
the version 1.0 sensors do not always change the rolling code when reset or
when batteries are changed. It can take several reset operations before the
code changes. Trial and error is the best approach here.

Barometer Accuracy and Offset

The Bosch BMP085 barometer has a specified absolute accuracy of +-2.5mb.
Although Bosch also quotes a "typical" accuracy of +-1.0mb this is not
guaranteed and should not be relied upon. Furthermore, Bosch states that the
process of soldering the barometer typically results in an additional offset of
around 1mb.

This means that uncorrected pressure readings from your barometer can be in
error by as much as 3.5mb. A large majority of the WxShields tested to date
seem to have an offset of 2.5mb or less, although our measurements are in no
way guaranteed.

That's not the end of the story, however. The more important specification is
the one called "relative accuracy". Let's say a particular barometer has an
offset of +2.1mb when the true station pressure is 1012.0mb. The barometer
will be reading 2.1mb higher (or 1014.1mb) and if we subtract the offset
(2.1mb) then we get the true station pressure (1014.1 - 2.1 = 1012.0).

Now what happens tomorrow when the true station pressure has dropped to
999.0mb? We are of course tempted to say that the barometer will read 2.1mb
higher than this, or 1001.1mb. In fact this is not generally the case – the
barometer might for example actually read 1001.12mb. Now if we subtract the
2.1mb offset from this we get 999.02mb so our error is now 0.02mb.

The above example illustrates what is meant by relative accuracy. If you
remove the offset at one pressure reading, relative accuracy specifies how
much the barometer can be off when the pressure changes. The BMP085's
relative accuracy is +-0.2mb and this is valid over a pressure range from 700mb
all the way to 1100mb. In other words, if an offset is measured at one pressure
(say 1012.0mb) then the barometer will be in error by no more than 0.2mb at
any other pressure between 700mb and 1100mb.

There is one other detail -- this particular relative accuracy specification only
applies if the barometer is kept at a constant temperature (25C). If the
barometer is being subjected to large temperature swings, then another
relative accuracy specification comes into play, which is +-0.5mb (for any
temperature between 0C and 60C). For many WxShield users, the indoor
temperature will be relatively constant and this specification will not cause too
much trouble.

Each WxShield is fully tested, and a suggested barometer offset is recorded on
the test slip attached to the anti-static bag the WxShield is shipped with. We
hope these offsets are close to the right value, but they are in no way

guaranteed to any level of accuracy. Please treat the suggested offset as only a
suggestion.

Below is a plot showing the MADIS QC analysis of one WxShield's BMP085
barometer over a period of about 12 weeks. The average error is only 0.09mb
(or 0.0025inHg) and the barometer has not required periodic tweaking after the
initial offset was determined.

The bottom plot shows the difference between the WxShield's barometer and
MADIS QC analysis values. Although the average is nearly zero, there are
significant excursions (as much as 2mb) from zero. There are most likely two
factors at work which cause this behavior.

1. Wind. Whenever wind is blowing it is due to pressure differences
between where you are and where the wind is coming from (and
where its going to). MADIS may or may not account for this, but even
if it does, it will not get it right all the time.

2. Non-standard atmospheric conditions. This particular station's
elevation is significantly different than all neighboring stations so
MADIS must make some assumptions about the vertical atmosphere
profile in order to compare stations. If MADIS gets that wrong, there
will be errors. A pressure difference of 2mb occurs with an altitude
change of only 20 meters (60 feet) so it does not take much to cause
this amount of error.

Signal Strength
In the main WSDL window, clicking on the “Details” button in the battery
status area will bring up a window that includes signal strength information on
your wireless sensors.

WSDL displays approximate received power levels in units of “dBm” which is
short for “decibels relative to one milli-watt”. See the following Wikipedia
article for a brief introduction to dBm:

http://en.wikipedia.org/wiki/DBm

 First, a caveat is in order regarding signal strength numbers. The Freescale
receiver IC provides signal strength information but the accuracy of these
readings is not specified by Freescale and may vary widely from unit to unit.
Therefore, comparing signal strengths reported on two different WxShields may
not be all that meaningful. These numbers are useful as a relative comparison
for comparing signal strength between sensors and trends over time.

The original antennas we purchased were only $2.20US plus shipping and you
get what you pay for. Although the hacked antenna works very well, there is
one problem you may encounter and need to be aware of.

The center pin in the right-angle SMA connector is sometimes loose (or can
become loose over time). When this happens, the center pin can get pushed
inwards and towards the threaded plug at the rear of the SMA connector. This
happens when the connector is threaded onto the WxShield and tightened. It
sometimes is pushed far enough to short out against the connector body. When
this happens signal strengths will drop by about 30dB or so.

If you experience low signal strengths or reception problems, carefully remove
the threaded plug at the rear of the connector. The plug is very small so be

http://en.wikipedia.org/wiki/DBm

careful not to lose it. Use a small tool (e.g. a common screwdriver or the shank
of a small drill bit) and firmly push on the center pin to seat it properly in the
connector. If that was the problem you should feel it give way and move a
little bit.

Afterwards, it is not mandatory to replace the end plug but you may get very
slightly better reception with it installed. For more information see the section
below on hacking the antenna.

WxShields delivered in late 2012 may have a small round plastic insulator
underneath the threaded plug to help with the center pin shorting problem. Be
careful not to lose the insulator if it is installed and you remove the plug.

Updating the WxShield Firmware

From time to time, it may be necessary to update the program code stored in
the Arduino UNO board that is part of the WxShield assembly. One example
would be to add support for Oregon Scientific version 1.0 sensors. This is
relatively easy to do if you follow the steps below. The current shield version's
firmware was built using Arduino software version 022. If possible, use this
version to build new firrmware versions; if version 022 is not available, a newer
version should work too.

1. Go to the Arduino web site (http://www.arduino.cc) and download the
version 1.0 software. This is a large file (tens of MB in size).

2. There is no regular installer for Arduino software. Instead the zip file is
simply extracted into a new directory on your computer's hard drive.
This will create a folder named “arduino-1.0”. From here on out, we'll
refer to the “arduino-1.0” directory as the “home directory”. The zip
file can be extracted anywhere you like:

a) On your desktop.

b) Somewhere in your My Documents folder.

c) In the Program Files folder (use Program Files (x86) on Windows Vista
or Windows 7) if you have a 64-bit system.

d) Just about anywhere else.

e) If you already have the Arduino software on your computer, it might
be a good idea to extract a second copy into a different directory.
This way, if the WSDL source code over-writes any of the built-in
libraries this won't cause any problems with your existing Arduino
software.

3. Get a copy of the current WSDL WxShield firmware source code. This is
also a zip file and will have a name something like this:
“WxShield-Source-Version-1.6.zip”.

Place this file into a different directory and extract it there.

4. In the home directory there is an executable file named “arduino” or
“arduino.exe” – double-click this file to start the Ardunino software. In
the window that comes up, click on File...Preferences. A new window
will open; change the Sketchbook location to the directory where you

http://www.arduino.cc/

extracted the WxShield source code zip file. The directory you specify
here should have sub-directories named sketches and libraries.

5. Now, click on File...Sketchbook...sketches...WsdlWxShield. If you do not
see this in the menu it means the Sketchbook location preference is not
set correctly.

This will open a new Arduino window and the original window can now
be closed. This new window should look something like this:

6. Click on Tools...Board... and select the Arduino board you have. The
first pre-assembled copies of the WxShield were shipped with the
Arduino Uno board. Look on the bottom of your WxShield if you are not
sure which board you have.

7. Now click on the “Verify” button, which is the one in the upper-left
corner and highlighted in green below:

8. This should cause a status message, “Compiling...” to appear near the
bottom of the window, like this:

9. In less than a minute the status should change to “Done Compiling”:

10.This verifies the WxShield sketch is valid and ready to be programmed
into your Arduino board. Plug your WxShield into the computer's USB
port and make sure that WSDL is NOT running. Now click on
Tools...Serial Port... and select the COM port corresponding to your
WxShield.

11.Now click the “Upload” button, which is highlighted below in green:

12.This should result in an “Uploading...” status message. The sketch will
be compiled again and then uploaded to your Arduino board. When
finished you should see something like this:

13.If there are cryptic error messages instead, make sure you have selected
the correct Arduino board model and serial port in the Tools menu.

That's it; your Arduino firmware is now updated and ready to connect again
with WSDL. Close the Arduino window and open WSDL.

Hacking the Antenna
The inexpensive antenna shipped with the WxShield can be easily modified as
described here and becomes a very effective little antenna. You may have
received a WxShield with an antenna that has already been modified. In that
case, this section can be skipped.

The photo above shows the original antenna as delivered. Start by separating
the black plastic cover from the metal connector. Grab the connector in one
hand, then twist and pull on the plastic cover to remove it. It may take a bit of
force to break the cover loose, and you may stretch or even break the little
internal coil antenna in the process; this is okay.

The above photo shows what’s inside after removing the plastic cover. The
next step is removing the coiled wire from the connector.

Remove the threaded plug on the rear of the connector. Inside is the
connector’s center pin post to which the coil wire is soldered. Use a small
soldering iron to remove the wire coil from the connector.

In the above photo, some solder-wick has been used to clean up the end of the
post. This is mostly done here for illustrative purposes and is not a necessary
step in general.

Now cut three lengths of 14AWG copper wire; one 15-inches long and two 7-½
inches long. At least one of the shorter pieces must be insulated but the
remainder can be bare if desired.

With a wire stripper, make two cuts in the insulation of the longer piece, at 7.3
and 7.8 inches from one end, as shown above. Take a sharp knife and cut
longitudinally along the insulation between the two cuts as shown below.

This will allow the short piece of insulation to be removed from the wire,
leaving a ½-inch long bare section in the longer piece. The bare section is
intentionally not quite in the center of the wire.

Strip back the insulation on one end on each of the remaining two pieces of
wire. Strip ½-inch on one piece and only about 1/8-inch on the other on. If you
are using bare wire for ground radials, then the insulated piece should be
stripped back about 1/8-inch.

After stripping the 1/8-inch from one short piece, use a file or grinding wheel
to shape the end of the wire into a two-sided, chisel-like point. The exploded
inset in the photo above shows the filed point in more detail.

Now the longer piece is ready to be soldered to the connector body, forming
two of the three ground radials.

The photo above shows the longer wire laid in place on the connector body
where it will be soldered. The middle of the wire is aligned with the middle of
the connector body. However since the bare section is not centered, it appears
offset to one side. This extra exposed wire on one side will be used to attach
the third radial.

Start by tinning the bare section and bottom of the connector body with solder.
Then bring the two together and apply heat until they are soldered together.
Avoid using too much solder as some may wick onto the connector nut and lock
it into place. The photo above shows the finished assembly.

While taking photos for this document, the third radial was soldered in place
next. However, that got in the way of attaching the vertical antenna element
making that step more difficult. The next step should then be to attach the
vertical element and we’ll show that next. You’ll see the third radial already
soldered on but if you follow this recommended order, the third radial will not
yet be attached.

The photo above shows the chisel-pointed end of the vertical element slid into
the connector body through the top opening. The pointed end has been
positioned between the opening in the center pin post.

Using a smaller soldering iron, the center element can now be soldered onto
the center pin as shown below. Be careful not to get solder onto the threads
for the rear plug as this will prevent the plug from being re-installed. If solder
does get onto the threads, it can usually be cleaned up with some solder wick.

Now the third ground radial can be attached. Bend a tight loop in the end of
the short piece that was stripped back ½-inch. Hook it over the exposed bare
section next to the connector body and crimp snugly with a pair of needle-nose
pliers as shown below.

It may help to secure the third radial horizontally in a vise while soldering it to
the long cross-radials. Applying heat mostly to the loop bent in the third radial
will help to prevent melting of the previously solder joint between the long
radial and connector body. If you have trouble melting this joint and it all
comes apart, it is permissible to move the crimped loop about 1/8-inch away
from the connector body and solder it in place there.

That’s all of the soldering. Drill a hole in the end of the plastic cover the same
size as the wire insulation. A 7/64-inch drill was used in this example.

Slip the plastic cover down over the vertical wire element and work it back
down in place as shown below.

Finally, trim the length of the vertical element. Measure this from the bottom
surface of the connector to the tip of the vertical wire. The trimmed length
should be 6.60 inches, 6-19/32 inches or 167.5mm. Don't include the diameter
of the wire soldered on the bottom of the connector in this measurement. Try
to get this as accurate as possible – the antenna's efficiency is quite sensitive to
the length of the vertical wire.

This completes the antenna assembly. It is a good idea to wait until the
antenna is installed on the WxShield before re-installing the small threaded
plug.

Fixing the Antenna Shorting Problem

On some of the antenna connectors, the center pin can be a bit loose.
Tightening the connector nut can cause the center pin to get pushed out
toward the threaded plug. If the plug is installed it can short against the plug
causing loss of signal strength. If the plug is not installed, it is also possible for
the vertical wire to short against the connector body if the threaded plug is
removed.

If this problem occurs, remove the threaded plug and use a small screwdriver
or other small drill bit or something similar to firmly push the center pin back
in after tightening the connector nut.

Some of the antennas delivered in late 2012 may have a small round plastic
insulator under the threaded plug to help prevent this problem.

In reality, it is not all that important to install the rear plug into the connector
body. Signal strength may be very slightly improved with the plug in place.
However, if the antenna is frequently removed and re-installed, it will be
easier to leave the plug out to provide access to the center pin.

The WxBox

As mentioned in the introduction, some WxShield units are provided with an
optional custom aluminum enclosure. This is a very inexpensive aluminum box
made from 30 mil (0.76mm) thick 5052 aluminum. It has a rough finish and a
few holes to accept the various connectors on the WxShield (USB, SHT15, DC
power and RF input). There is also a hole in the top for viewing the red/green
LEDs that indicate when signals are being received.

The WxShield is only held in the WxBox by connectors protruding through holes
in the box. There are no mounting screws (other than four #6-32 x 1/4” screws
used to hold the two halves of the box together).

Installing the WxShield into the WxBox requires the half of the box with
mounting holes to be slightly bent open. This task is easier to accomplish with
two people – one person gently bends the box open while the other guides the
WxShield into the mounting holes.

To start with, separate the WxShield receiver PC board from the Arduino
processor PC board. Then place the receiver board's RF input connector against
the round hole in the end of the box as shown in the photograph below on the
left (an errant hole is also visible there which does not exist on the current
WxBox design).

Next, gently spread the ends of the box apart while guiding the receiver board
into place as shown below. At some point, as the RJ14 connector is moved
towards its mounting hole, the RF connector will kind of “pop” into place and
the RJ14 connector can then be easily aligned with the correct square hole.
This state of affairs is seen in the photograph above on the right.

Now the Arduino processor can be re-assembled to the WxShield receiver
board. Start by inserting the Arduino's USB connector through the matching
hole in the box. At the same time, align the pins on the receiver with the
mating socket on the Arduino processor.

This is shown in the photographs above-right and below-left, from opposite
sides of the box. Be careful to get the the pins aligned correctly as shown; it is
very easy to mis-align the pins and this may destroy some parts on the PC
boards when it is powered up again.

Next, slip the two halves of the box together as shown in the photograph
above-right. It may be necessary to gently bend the outer box half together to
get the mounting holes to line up with the inner box half.

The two box halves are secured with four #6-32 x 1/4” machine screws. They
are force-threaded into the smaller holes of the inner box half. Be careful not

to strip these threads if the screws have already been installed once. Tighten
them only lightly.

The hole locations on inner and outer box halves are designed so the mounting
screws will pull the outer box half tightly against the inner box half and it may
be necessary to gently hold the outer box half tight against the inner half while
installing the screws.

Dis-assembly is the reverse of the assembly process describe above. As with
assembly, it is much easier to have a second person help with removal of the
receiver board from the box. One person carefully bends the box ends apart
while the second person gently coaxes the receiver board out. Do this by
moving the RJ14 connector upwards (away from the box) and at the same time
moving the RF input connector out of its mounting hole.

